科目: 來源: 題型:
【題目】在直角坐標系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列命題:
存在每個面都是直角三角形的四面體;
若三棱錐的三條側棱兩兩垂直,則其三個側面也兩兩垂直;
棱臺的側棱延長后交于一點;
用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;
其中正確命題的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)在處取得極大值或極小值,則稱為函數(shù)的極值點.
設函數(shù),.
(1)若有兩個極值點,且滿足,求的值及的取值范圍;
(2)若在處的切線與的圖象有且只有一個公共點,求的值;
(3)若,且對滿足“函數(shù)與的圖象總有三個交點”的任意實數(shù),都有成立,求滿足的條件.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣ .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C1: + =1,圓C2:x2+y2=t經過橢圓C1的焦點.
(1)設P為橢圓上任意一點,過點P作圓C2的切線,切點為Q,求△POQ面積的取值范圍,其中O為坐標原點;
(2)過點M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了了解甲、乙兩所學校全體高三年級學生在該地區(qū)八校聯(lián)考中的數(shù)學成績情況,從兩校各隨機抽取60名學生,將所得樣本作出頻數(shù)分布統(tǒng)計表如下: 甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 5 | 9 | 10 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 14 | 10 | 6 | 4 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 2 | 4 | 8 | 16 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 15 | 6 | 6 | 3 |
以抽樣所得樣本數(shù)據(jù)估計總體
(1)比較甲、乙兩校學生的數(shù)學平均成績的高低;
(2)若規(guī)定數(shù)學成績不低于120分為優(yōu)秀,從甲、乙兩校全體高三學生中各隨機抽取2人,其中數(shù)學成績?yōu)閮?yōu)秀的共X人,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直線PC與平面ABCD所成角的正切為 .
(1)設E為直線PC上任意一點,求證:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓的左右頂點為,右焦點為,一條準線方程是,點為橢圓上異于的兩點,點為的中點.
(1)求橢圓的標準方程;
(2)直線交直線于點,記直線的斜率為,直線的斜率為,求證:為定值;
(3)若,求直線斜率的取值范圍。
查看答案和解析>>
科目: 來源: 題型:
【題目】某工藝品廠要生產如圖所示的一種工藝品,該工藝品由一個實心圓柱體和一個實心半球體組成,要求半球的半徑和圓柱的底面半徑之比為,工藝品的體積為,F(xiàn)設圓柱的底面半徑為,工藝品的表面積為,半球與圓柱的接觸面積忽略不計。
(1)試寫出關于的函數(shù)關系式并求出的取值范圍;
(2)怎樣設計才能使工藝品的表面積最小?并求出最小值。
參考公式:球體積公式:;球表面積公式:,其中為球半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com