相關(guān)習(xí)題
 0  261009  261017  261023  261027  261033  261035  261039  261045  261047  261053  261059  261063  261065  261069  261075  261077  261083  261087  261089  261093  261095  261099  261101  261103  261104  261105  261107  261108  261109  261111  261113  261117  261119  261123  261125  261129  261135  261137  261143  261147  261149  261153  261159  261165  261167  261173  261177  261179  261185  261189  261195  261203  266669 

科目: 來(lái)源: 題型:

【題目】在四棱錐PABCD中,ADBC,平面PAC⊥平面ABCD,AB=AD=DC=1,

ABC=DCB=60EPC上一點(diǎn).

Ⅰ)證明:平面EAB⊥平面PAC;

Ⅱ)若△PAC是正三角形EPC中點(diǎn),求三棱錐AEBC的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知△ABC的內(nèi)角A, B, C的對(duì)邊分別為a, b, c,.

求角C的大小;

Ⅱ)設(shè)角A的平分線交BCD,且AD=,若b=,求△ABC的面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC;

BDGC成異面直線且?jiàn)A角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線,直線.

(1)將曲線上所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的2倍、倍后得到曲線,請(qǐng)寫(xiě)出直線,和曲線的直角坐標(biāo)方程;

(2)若直線經(jīng)過(guò)點(diǎn) 與曲線交于點(diǎn),求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

1若不等式恒成立,則實(shí)數(shù)的取值范圍;

2在(1)中, 取最小值時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)證明不等式: ).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓 ,其焦距為2,離心率為

1)求橢圓的方程;

2)設(shè)橢圓的右焦點(diǎn)為, 軸上一點(diǎn),滿足,過(guò)點(diǎn)作斜率不為0的直線交橢圓于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知四棱錐的底面為正方形, 上面 的中點(diǎn).

(1)求證:

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】將圓上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的4倍,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)軸分別交于半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為: 且直線在直角坐標(biāo)系中與軸分別交于兩點(diǎn).

1)寫(xiě)出曲線的參數(shù)方程,直線的普通方程;

2)問(wèn)在曲線上是否存在點(diǎn),使得的面積若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)設(shè),討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點(diǎn),求的范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,三棱柱中,已知側(cè)面.

1)求證 平面;

2是棱長(zhǎng)上的一點(diǎn),若二面角的正弦值為,的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案