科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.
(1)求圓的方程。
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量 ,其中.函數(shù)的圖象過點(diǎn),點(diǎn)與其相鄰的最高點(diǎn)的距離為4.
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)計(jì)算的值;
(Ⅲ)設(shè)函數(shù),試討論函數(shù)在區(qū)間 [0,3] 上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( )
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
B. 函數(shù)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:(1)DE∥平面AA1C1C;
(2)BC1⊥平面AB1C.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知P是直線l:3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓C:x2+y2-2x-2y+1=0的兩條切線(A,B為切點(diǎn)),則四邊形PACB面積的最小值( 。
A. B. C. 2D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程與離心率;
(Ⅱ)設(shè)橢圓上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被軸截得的弦長(zhǎng)是定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是
A. 56 B. 60 C. 120 D. 140
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)過橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線過坐標(biāo)原點(diǎn)且直線與的斜率互為相反數(shù),直線與橢圓交于兩點(diǎn)且均不與點(diǎn)重合,設(shè)直線的斜率為,直線的斜率為.證明: 為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量,,函數(shù).
(1)求的最小正周期及圖象的對(duì)稱軸方程;
(2)若先將的圖象上每個(gè)點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,然后再向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,求函數(shù)在區(qū)間內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為.
(1)求橢圓的方程;
(2)點(diǎn)是以長(zhǎng)軸為直徑的圓上一點(diǎn),圓在點(diǎn)處的切線交直線于點(diǎn),求證:過點(diǎn)且垂直于直線的直線過橢圓的右焦點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com