科目: 來源: 題型:
【題目】某地區(qū)上年度電價為元/kWh,年用電量為kWh.本年度計劃將電價降低到0.55元/ kWh到0.75元/ kWh之間,而用戶期望電價為0.40元/ kWh.經測算,下調電價后新增用電量與實際電價與用戶的期望電價的差成反比(比例系數(shù)為),該地區(qū)電力的成本價為0.30元/ kWh.
(1)寫出本年度電價下調后,電力部門的收益與實際電價之間的函數(shù)關系式;
(2)設=,當電價最低定為多少時仍可保證電力部門的收益比上一年至少增長20%?(注:收益=實際電量×(實際電價-成本價))
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù),且).
(Ⅰ)寫出圓的極坐標方程和直線的普通方程;
(Ⅱ)若直線與圓交于、兩點,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果存在常數(shù)(),對于任意,都有成立,那么稱該函數(shù)為“函數(shù)”.
(1)分別判斷函數(shù),是否為“函數(shù)”,若不是,說明理由;
(2)若函數(shù)是“函數(shù)”,求實數(shù)的取值范圍;
(3)記所有定義在上的單調函數(shù)組成的集合為,所有函數(shù)組成的集合為,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】設函數(shù),若曲線在點 處的切線方程為.
(Ⅰ)求的解析式;
(Ⅱ)求證:在曲線上任意一點處的切線與直線和所圍成的三角形面積為定值,并求出此定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,,直線:(為參數(shù),).
(Ⅰ)求直線的普通方程;
(Ⅱ)在曲線上求一點,使它到直線的距離最短,并求出點的極坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷并證明在區(qū)間上的單調性;
(2)若函數(shù)與函數(shù)在上有相同的值域,求的值;
(3)函數(shù),若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場預計全年分批購入電視機3600臺,其中每臺價值2000元,每批購入的臺數(shù)相同,且每批均需付運費400元,儲存購入的電視機全年所付保管費與每批購入的電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需要支付運費和保管費共43600元.
(1)求的值;
(2)請問如何安排每批進貨的數(shù)量,使支付運費與保管費的和最少?并求出相應最少費用.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com