科目: 來源: 題型:
【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖:
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2020年我國生活垃圾無害化處理量
附注:
參考數(shù)據(jù):,,,
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距最小二乘估計(jì)公式分別為,
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn),點(diǎn)是圓上的動點(diǎn),為線段的中點(diǎn),為線段上點(diǎn),且,設(shè)動點(diǎn)的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)直線與曲線相交于、兩點(diǎn),與圓相交于另一點(diǎn),且點(diǎn)、位于點(diǎn)的同側(cè),當(dāng)面積最大時(shí),求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標(biāo)方程為
(II)將的參數(shù)方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結(jié)束】
23
【題目】已知、、均為正實(shí)數(shù).
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對于任意的,存在正實(shí)數(shù),使得,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線, (為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的直角坐標(biāo)方程為.
(Ⅰ)將曲線的直角坐標(biāo)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為、,求的取值范圍.
【答案】(I);(II).
【解析】試題分析:(Ⅰ)將由代入,化簡即可得到曲線的極坐標(biāo)方程;(Ⅱ)將的參數(shù)方程代入,得,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理結(jié)合輔助角公式,由三角函數(shù)的有界性可得結(jié)果.
試題解析:(Ⅰ)由及,得,即
所以曲線的極坐標(biāo)方程為
(II)將的參數(shù)方程代入,得
∴, 所以,又,
所以,且,
所以,
由,得,所以.
故的取值范圍是.
【題型】解答題
【結(jié)束】
23
【題目】已知、、均為正實(shí)數(shù).
(Ⅰ)若,求證:
(Ⅱ)若,求證:
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應(yīng)市政府迎接全國文明城市創(chuàng)建活動的號召,某學(xué)校組織學(xué)生舉行了文明城市創(chuàng)建知識類競賽,為了了解本次競賽中學(xué)生的成績情況,從中抽取名學(xué)生的分?jǐn)?shù)(滿分為100分,得分取正整數(shù),抽取學(xué)生的分?jǐn)?shù)均在之內(nèi))作為樣本進(jìn)行統(tǒng)計(jì),按照分成組,并作出如下頻率分布直方圖,已知得分在的學(xué)生有人.
求頻率分布直方圖中的的值,并估計(jì)學(xué)生分?jǐn)?shù)的眾數(shù)、平均數(shù)和中位數(shù):
如果從三個(gè)分?jǐn)?shù)段的學(xué)生中,按分層抽樣的方法抽取人參與座談會,然后再從兩組選取的人中隨機(jī)抽取人作進(jìn)一步的測試,求這人中恰有一人得分在的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列判斷正確的是( )
A. “若,則”的否命題為真命題
B. 函數(shù)的最小值為2
C. 命題“若,則”的逆否命題為真命題
D. 命題“”的否定是:“”。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com