科目: 來源: 題型:
【題目】在棱長為1的正方體中,已知點P為側面上的一動點,則下列結論正確的是( )
A.若點P總保持,則動點P的軌跡是一條線段;
B.若點P到點A的距離為,則動點P的軌跡是一段圓;
C.若P到直線與直線的距離相等,則動點P的軌跡是一段拋物線;
D.若P到直線與直線的距離比為,則動點P的軌跡是一段雙曲線.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果對于函數定義域內任意的兩個自變量的值,,當時,都有,且存在兩個不相等的自變量值,,使得,就稱為定義域上的“不嚴格的增函數”.下列所給的四個函數中為“不嚴格增函數”的是( )
A.;B.;
C.;D..
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,傾斜角為的直線的參數方程為(為參數).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求直線的普通方程與曲線的直角坐標方程;
(2)若直線與曲線交于,兩點,且,求直線的傾斜角.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構成的三角形的面積為;
(1)求橢圓的方程;
(2)過作垂直于軸的直線交橢圓于兩點(點在第二象限),是橢圓上位于直線兩側的動點,若,求證:直線的斜率為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受歡迎,即語數外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學生的選科情況,從高二年級的2000名學生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學生進行調查.
(1)已知抽取的n名學生中含男生110人,求n的值及抽取到的女生人數;
(2)在(1)的情況下對抽取到的n名同學“選物理”和“選歷史”進行問卷調查,得到下列2×2列聯表.請將列聯表補充完整,并判斷是否有99%的把握認為選科目與性別有關?
選物理 | 選歷史 | 合計 | |
男生 | 90 | ||
女生 | 30 | ||
合計 |
(3)在(2)的條件下,從抽取的“選歷史”的學生中按性別分層抽樣再抽取5名,再從這5名學生中抽取2人了解選政治、地理、化學、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓,橢圓以的長軸為短軸,且兩個橢圓的離心率相同,設O為坐標原點,點A、B分別在橢圓、上,若,則直線AB的斜率k為( ).
A.1B.-1C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】1852年,英國來華傳教士偉烈亞力將《孫子算經》中“物不知數”問題的解法傳至歐洲.1874年,英國數學家馬西森指出此法符合1801年由高斯得到的關于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”.“中國剩余定理”講的是一個關于整除的問題,例如求1到2000這2000個整數中,能被3除余1且被7除余1的數的個數,現由程序框圖,其中MOD函數是一個求余函數,記表示m除以n的余數,例如,則輸出i為( ).
A.98B.97C.96D.95
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com