0  1488  1496  1502  1506  1512  1514  1518  1524  1526  1532  1538  1542  1544  1548  1554  1556  1562  1566  1568  1572  1574  1578  1580  1582  1583  1584  1586  1587  1588  1590  1592  1596  1598  1602  1604  1608  1614  1616  1622  1626  1628  1632  1638  1644  1646  1652  1656  1658  1664  1668  1674  1682  3002 

2008年全國各地中考試題壓軸題精選講座七

探究、操作性問題

【知識縱橫】

     探索研究是通過對題意的理解,解題過程由簡單到難,在承上啟下的作用下,引導(dǎo)學(xué)生思考新的問題,大膽進(jìn)行分析、推理和歸納,即從特殊到一般去探究,以特殊去探求一般從而獲得結(jié)論,有時還要用已學(xué)的知識加以論證探求所得結(jié)論。操作性問題是讓學(xué)生按題目要求進(jìn)行操作,考察學(xué)生的動手能力、想象能力和概括能力。

【典型例題】

【例1】(江蘇鎮(zhèn)江)探索研究

如圖,在直角坐標(biāo)系中,點(diǎn)為函數(shù)在第一象限內(nèi)的圖象上的任一

點(diǎn),點(diǎn)的坐標(biāo)為,直線且與軸平行,過軸的平行線分別交軸,,連結(jié)軸于,直線軸于

(1)求證:點(diǎn)為線段的中點(diǎn);  

(2)求證:①四邊形為平行四邊形;  ②平行四邊形為菱形;

(3)除點(diǎn)外,直線與拋物線有無其它公共點(diǎn)?并說明理由.

【思路點(diǎn)撥】(2)①證;②設(shè),證AP=PQ;(3)求直線的解析式與拋物線方程組成聯(lián)立方程組,討論方程組解的情況。

 

 

 

 

 

 

 

 

【例2】(福建南平)

(1)如圖1,圖2,圖3,在中,分別以為邊,向外作正三角形,正四邊形,正五邊形,相交于點(diǎn)

①如圖1,求證:;

 ②探究:如圖1,         ;

如圖2,         ;

如圖3,        

(2)如圖4,已知:是以為邊向外所作正邊形的一組鄰邊;是以為邊向外所作正邊形的一組鄰邊.的延長相交于點(diǎn)

①猜想:如圖4,         (用含的式子表示);

②根據(jù)圖4證明你的猜想.

【思路點(diǎn)撥】(2)②由正邊形的內(nèi)角定理,證。

 

 

 

 

【例3】(內(nèi)江市)

在一平直河岸同側(cè)有兩個村莊,的距離分別是3km和2km,.現(xiàn)計劃在河岸上建一抽水站,用輸水管向兩個村莊供水.

方案設(shè)計

某班數(shù)學(xué)興趣小組設(shè)計了兩種鋪設(shè)管道方案:圖13-1是方案一的示意圖,設(shè)該方案中管道長度為,且(其中于點(diǎn));圖13-2是方案二的示意圖,設(shè)該方案中管道長度為,且(其中點(diǎn)與點(diǎn)關(guān)于對稱,交于點(diǎn)).

 

 

 

 

 

觀察計算

(1)在方案一中,         km(用含的式子表示);

(2)在方案二中,組長小宇為了計算的長,作了如圖13-3所示的輔助線,請你按小宇同學(xué)的思路計算,         km(用含的式子表示).

探索歸納

(1)①當(dāng)時,比較大。(填“>”、“=”或“<”);

②當(dāng)時,比較大。(填“>”、“=”或“<”);

(2)請你參考右邊方框中的方法指導(dǎo),

(當(dāng)時)的所有取值情況進(jìn)

行分析,要使鋪設(shè)的管道長度較短,

應(yīng)選擇方案一還是方案二?

【思路點(diǎn)撥】參考方法指導(dǎo)解答探索

歸納(2)。

 

 

 

 

 

 

 

【例4】(浙江寧波)如圖1,把一張標(biāo)準(zhǔn)紙一次又一次對開,得到“2開”紙、“4開”紙、“8開”紙、“16開”紙….已知標(biāo)準(zhǔn)紙的短邊長為

(1)如圖2,把這張標(biāo)準(zhǔn)紙對開得到的“16開”張紙按如下步驟折疊:

第一步  將矩形的短邊與長邊對齊折疊,點(diǎn)落在上的點(diǎn)處,鋪平后得折痕;

第二步    將長邊與折痕對齊折疊,點(diǎn)正好與點(diǎn)重合,鋪平后得折痕

的值是        ,的長分別是       ,       

(2)“2開”紙、“4開”紙、“8開”紙的長與寬之比是否都相等?若相等,直接寫出這個比值;若不相等,請分別計算它們的比值.

(3)如圖3,由8個大小相等的小正方形構(gòu)成“”型圖案,它的四個頂點(diǎn)分別在“16開”紙的邊上,求的長.

(4)已知梯形中,,,且四個頂點(diǎn)都在“4開”紙的邊上,請直接寫出2個符合條件且大小不同的直角梯形的面積.

 

 

 

 

 

 

 

【思路點(diǎn)撥】(3)證,,設(shè),建立關(guān)于x的方程解之;(4)參考圖3分二類情形討論。

 

 

 

 

 

 

 

 

 

 

【學(xué)力訓(xùn)練】

1、(山東聊城)探索研究:如圖,把一張長10cm,寬8cm的矩形硬紙板的四周各剪

去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計).

 

 

 

 

 

(1)要使長方體盒子的底面積為48cm2,那么剪去的正方形的邊長為多少?

(2)你感到折合而成的長方體盒子的側(cè)面積會不會有更大的情況?如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由;

(3)如果把矩形硬紙板的四周分別剪去2個同樣大小的正方形和2個同樣形狀、同樣大小的矩形,然后折合成一個有蓋的長方體盒子,是否有側(cè)面積最大的情況;如果有,請你求出最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.

2、(山東棗莊)把一副三角板如圖甲放置,其中,,,斜邊,.把三角板DCE繞點(diǎn)C順時針旋轉(zhuǎn)15°得到△D1CE1(如圖乙).這時AB與CD1相交于點(diǎn),與D1E1相交于點(diǎn)F.

(1)求的度數(shù);

(2)求線段AD1的長;

(3)若把三角形D1CE1繞著點(diǎn)順時針再旋轉(zhuǎn)30°得△D2CE2,這時點(diǎn)B在△D2CE2的內(nèi)部、外部、還是邊上?說明理由.

 

 

 

 

 

 

 

3、(江蘇鹽城)如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.

解答下列問題:

(1)如果AB=AC,∠BAC=90º.

①當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖乙,線段CF、BD之間的位置

關(guān)系為   ▲   ,數(shù)量關(guān)系為   ▲  

②當(dāng)點(diǎn)D在線段BC的延長線上時,如圖丙,①中的結(jié)論是否仍然成立,為什么?

 

 

 

 

 

 

 

(2)如果AB≠AC,∠BAC≠90º,點(diǎn)D在線段BC上運(yùn)動.

試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

(3)若AC=,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF

相交于點(diǎn)P,求線段CP長的最大值.

    4、(07麗水市)如圖,在平面直角坐標(biāo)系中,直角梯形的邊落在軸的正半軸上,且,=4,=6,=8.正方形的兩邊分別落在坐標(biāo)軸上,且它的面積等于直角梯形面積.將正方形沿軸的正半軸平行移動,設(shè)它與直角梯形的重疊部分面積為

1)分析與計算:

求正方形的邊長;

(2)操作與求解:

①正方形平行移動過程中,通過操作、觀察,試判斷>0)的變化情況是       ;

A.逐漸增大    B.逐漸減少    C.先增大后減少   D.先減少后增大

②當(dāng)正方形頂點(diǎn)移動到點(diǎn)時,求的值;

(3)探究與歸納:

設(shè)正方形的頂點(diǎn)向右移動的距離為,求重疊部分面積的函數(shù)關(guān)系式.

 

 

 

 

 

試題詳情

2008年全國各地中考試題壓軸題精選講座六

閱讀理解問題

【知識縱橫】

   閱讀理解的整體模式是:閱讀―理解―應(yīng)用。重點(diǎn)是閱讀,難點(diǎn)是理解,關(guān)鍵是應(yīng)用,通過閱讀,對所提供的文字、符號、圖形等進(jìn)行分析和綜合,在理解的基礎(chǔ)上制定解題策略。

【典型例題】

    【例1】(聊城市)一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設(shè)慢車行駛的時間為,兩車之間的距離,圖中的折線表示之間的函數(shù)關(guān)系.

根據(jù)圖象進(jìn)行以下探究:

信息讀取

(1)甲、乙兩地之間的距離為         km;

(2)請解釋圖中點(diǎn)的實(shí)際意義;

 

圖象理解

(3)求慢車和快車的速度;

(4)求線段所表示的之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

 

問題解決

(5)若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車與慢車相遇.求第二列快車比第一列快車晚出發(fā)多少小時?

【思路點(diǎn)撥】理解圖象的實(shí)際意義。

 

【例2】(江蘇鎮(zhèn)江)理解發(fā)現(xiàn)

閱讀以下材料:

對于三個數(shù),用表示這三個數(shù)的平均數(shù),用表示這三個數(shù)中最小的數(shù).例如:

;;

解決下列問題:

(1)填空:        ;

如果,則的取值范圍為

(2)①如果,求;

②根據(jù)①,你發(fā)現(xiàn)了結(jié)論“如果,那么         (填的大小關(guān)系)”.證明你發(fā)現(xiàn)的結(jié)論;

③運(yùn)用②的結(jié)論,填空:

,則      

(3)在同一直角坐標(biāo)系中作出函數(shù),,的圖象(不需列表描點(diǎn)).通過觀察圖象,填空:的最大值為        

     【思路點(diǎn)撥】(2)②,則,.若,可得;(3)作出圖象,通過觀察圖象解答。

 

 

 

 

 

【例3】(廣東佛山)我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.

例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).

請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:

(1) 如圖1,在圓O所在平面上,放置一條直線和圓O分別交于點(diǎn)A、B),根據(jù)這個圖形可以提出的概念或問題有哪些(直接寫出兩個即可)?

(2) 如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心兩條直線與圓O分別交于點(diǎn)A、B,與圓O分別交于點(diǎn)C、D).

請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之.

(3) 如圖3,其中AB是圓O的直徑,AC是弦,D是的中點(diǎn),弦DE⊥AB于點(diǎn)F. 請找出點(diǎn)C和點(diǎn)E重合的條件,并說明理由.

 

 

 

 

 

 

 

 

 

【思路點(diǎn)撥】(2)分四種情形討論;(3) 構(gòu)建關(guān)于角的方程。

 

 

 

 

【學(xué)力訓(xùn)練】

1、(寧波市)閱讀解答:2008年5月1日,目前世界上最長的跨海大橋――杭州灣跨海大橋通車了.通車后,蘇南A地到寧波港的路程比原來縮短了120千米.已知運(yùn)輸車速度不變時,行駛時間將從原來的3時20分縮短到2時.

(1)求A地經(jīng)杭州灣跨海大橋到寧波港的路程.

(2)若貨物運(yùn)輸費(fèi)用包括運(yùn)輸成本和時間成本,已知某車貨物從A地到寧波港的運(yùn)輸成本是每千米1.8元,時間成本是每時28元,那么該車貨物從A地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?

(3)A地準(zhǔn)備開辟寧波方向的外運(yùn)路線,即貨物從A地經(jīng)杭州灣跨海大橋到寧波港,再從寧波港運(yùn)到B地.若有一批貨物(不超過10車)從A地按外運(yùn)路線運(yùn)到B地的運(yùn)費(fèi)需8320元,其中從A地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到B地的海上運(yùn)費(fèi)對一批不超過10車的貨物計費(fèi)方式是:一車800元,當(dāng)貨物每增加1車時,每車的海上運(yùn)費(fèi)就減少20元,問這批貨物有幾車?

 

 

 

 

 

 

 

2、(溫州市)解方程。由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對應(yīng)的x的值。在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點(diǎn)在1的右邊或-2的左邊,若x對應(yīng)點(diǎn)在1的右邊,由圖(17)可以看出x=2;同理,若x對應(yīng)點(diǎn)在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3

 

 

 

 

參考閱讀材料,解答下列問題:

(1)方程的解為                     

(2)解不等式≥9;

(3)若≤a對任意的x都成立,求a的取值范圍.

 

 

 

 

3、(江蘇鹽城)閱讀理解:對于任意正實(shí)數(shù),

,,只有點(diǎn)時,等號成立.

結(jié)論:在均為正實(shí)數(shù))中,若為定值,則,只有當(dāng)時,有最小值

根據(jù)上述內(nèi)容,回答下列問題:

,只有當(dāng)         時,有最小值         

思考驗(yàn)證:如圖1,為半圓的直徑,為半圓上任意一點(diǎn),(與點(diǎn)不重合).過點(diǎn),垂足為,,.試根據(jù)圖形驗(yàn)證,并指出等號成立時的條件.

 

 

 

 

 

 

4、(07寧波市)四邊形一條對角線所在直線上的點(diǎn),如果到這條對角線的兩端點(diǎn)的距離不相等,但到另一對角線的兩個端點(diǎn)的距離相等,則稱這點(diǎn)為這個四邊形的準(zhǔn)等距點(diǎn).如圖l,點(diǎn)P為四邊形ABCD對角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn).

(1)如圖2,畫出菱形ABCD的一個準(zhǔn)等距點(diǎn).

(2)如圖3,作出四邊形ABCD的一個準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫作法).

(3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長BP交CD于點(diǎn)E,延長DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形AB CD的準(zhǔn)等距點(diǎn).

(4)試研究四邊形的準(zhǔn)等距點(diǎn)個數(shù)的情況(說出相應(yīng)四邊形的特征及準(zhǔn)等距點(diǎn)的個數(shù),不必證明).

試題詳情

2008年全國各地中考試題壓軸題精選講座五

函數(shù)、方程、不等式問題

【知識縱橫】

    函數(shù)、方程、不等式的結(jié)合,是函數(shù)某一變量值一定或在某一范圍下的方程或不等式,體現(xiàn)了一般到特殊的觀念。也體現(xiàn)了函數(shù)圖像與方程、不等式的內(nèi)在聯(lián)系,例求兩個函數(shù)的交點(diǎn)坐標(biāo),一般通過函數(shù)解析式組成的方程組來解決。又如例4復(fù)合了一次函數(shù)、二次函數(shù),并對所得的函數(shù)要結(jié)合自變量的取值范圍來考慮最值,這就需要結(jié)合圖像來解決。

【典型例題】

    【例1】(天津市)已知拋物線

(1)若,求該拋物線與軸公共點(diǎn)的坐標(biāo);

(2)若,且當(dāng)時,拋物線與軸有且只有一個公共點(diǎn),求的取值范圍;

(3)若,且時,對應(yīng)的時,對應(yīng)的,試判斷當(dāng)時,拋物線與軸是否有公共點(diǎn)?若有,請證明你的結(jié)論;若沒有,闡述理由.

【思路點(diǎn)撥】(Ⅰ)令y=0,求方程的兩根;(2)考慮判別式;(3)由不等式及結(jié)合圖像解之。

 

 

 

 

 

 

 

 

 

 

 

 

 

【例2】(黃石市)如圖,已知拋物線與軸交于點(diǎn),,與軸交于點(diǎn)

(1)求拋物線的解析式及其頂點(diǎn)的坐標(biāo);

(2)設(shè)直線軸于點(diǎn).在線段的垂直平分線上是否存在點(diǎn),使得點(diǎn)到直線的距離等于點(diǎn)到原點(diǎn)的距離?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請說明理由;

(3)過點(diǎn)軸的垂線,交直線于點(diǎn),將拋物線沿

其對稱軸平移,使拋物線與線段總有公共點(diǎn).試探究:拋

物線向上最多可平移多少個單位長度?向下最多可平移多少個

單位長度?

【思路點(diǎn)撥】(2)設(shè),建立關(guān)于t的方程;

(3)考慮拋物線向上平移、向下平移兩種情況。

 

 

 

 

 

 

 

 

 

 

 

 

【例3】(吉林長春)已知兩個關(guān)于的二次函數(shù)與當(dāng)時,;且二次函數(shù)的圖象的對稱軸是直線

(1)求的值;

(2)求函數(shù)的表達(dá)式;

(3)在同一直角坐標(biāo)系內(nèi),問函數(shù)的圖象與的圖象是否有交點(diǎn)?請說明理由.

【思路點(diǎn)撥】(1)=(y 1 + y 2)―;(2)由對稱軸的方程,求出a的值;(3)考慮方程根的判別式。

 

 

 

 

 

 

 

【例4】(廣西南寧)隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高。某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤與投資量成正比例關(guān)系,如圖①所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖②所示(注:利潤與投資量的單位:萬元)

(1)分別求出利潤關(guān)于投資量的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

 

【思路點(diǎn)撥】:(2)設(shè)獲得的利潤是萬元,則,注意x范圍內(nèi)最值求法。

 

 

 

 

 

 

【學(xué)力訓(xùn)練】

1、(廣州)如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點(diǎn).

(1)根據(jù)圖象,分別寫出A、B的坐標(biāo);

(2)求出兩函數(shù)解析式;

(3)根據(jù)圖象回答:當(dāng)為何值時,一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.

 

 

2、(江西省卷)已知:如圖所示的兩條拋物線的解析式分別是,(其中為常數(shù),且).

(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;

(2)當(dāng)時,設(shè)軸分別交于兩點(diǎn)(的左邊),

軸分別交于兩點(diǎn)(的左邊),觀察四點(diǎn)坐標(biāo),請寫出一個你所得到的正確結(jié)論,并說明理由;

(3)設(shè)上述兩條拋物線相交于兩點(diǎn),直線都垂直于軸,分別經(jīng)過兩點(diǎn),在直線之間,且與兩條拋物線分別交于兩點(diǎn),求線段的最大值.

 

 

 

 

 

 

 

 

 

 

 

3、(四川自貢)拋物線的頂點(diǎn)為M,與軸的交點(diǎn)為A、B(點(diǎn)B在點(diǎn)A的右側(cè)),△ABM的三個內(nèi)角∠M、∠A、∠B所對的邊分別為m、a、b.若關(guān)

的一元二次方程有兩個相等的實(shí)數(shù)根.

(1)判斷△ABM的形狀,并說明理由.

(2)當(dāng)頂點(diǎn)M的坐標(biāo)為(-2,-1)時,求拋物線的解析式,并畫出該拋物線的大

致圖形.

(3)若平行于軸的直線與拋物線交于C、D兩點(diǎn),以CD為直徑的圓恰好與軸相切,

求該圓的圓心坐標(biāo).

 

 

 

 

 

 

 

 

 

 

4、(青海省卷)王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對解題過程進(jìn)行回顧反思,效果會更好.某一天他利用30分鐘時間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖甲所示,用于回顧反思的時間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖乙所示(其中*是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時間不超過用于解題的時間.

(1)求王亮解題的學(xué)習(xí)收益量與用于解題的時間之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)求王亮回顧反思的學(xué)習(xí)收益量與用于回顧反思的時間之間的函數(shù)關(guān)系式;

(3)王亮如何分配解題和回顧反思的時間,才能使這30分鐘的學(xué)習(xí)收益總量最大?

(學(xué)習(xí)收益總量解題的學(xué)習(xí)收益量回顧反思的學(xué)習(xí)收益量)

 

 

 

試題詳情

2008年全國各地中考試題壓軸題精選講座三

函數(shù)及圖像與幾何問題

【知識縱橫】

    函數(shù)(本節(jié)主要指一次函數(shù)、反比例函數(shù))及圖像與幾何問題,是以函數(shù)為背景探求幾何性質(zhì),這類題很重要點(diǎn)是利用函數(shù)的性質(zhì),解決幾個主要點(diǎn)的坐標(biāo)問題,使幾何知識和函數(shù)知識有機(jī)而自然結(jié)合起來,這樣,才能突破難點(diǎn)。但在解這類題目時,要注意方程的解與坐標(biāo)關(guān)系,及坐標(biāo)值與線段長度關(guān)系。

【典型例題】

【例1】(山西太原)如圖,在平面直角坐標(biāo)系中,直線交于點(diǎn),分別交軸于點(diǎn)和點(diǎn),點(diǎn)是直線上的一個動點(diǎn).

(1)求點(diǎn)的坐標(biāo).

(2)當(dāng)為等腰三角形時,求點(diǎn)的坐標(biāo).

(3)在直線上是否存在點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出的值;如果不存在,請說明理由.

    【思路點(diǎn)撥】(1)注意直線方程的解與坐標(biāo)關(guān)系;

(2)當(dāng)為等腰三角形時,分三種情況討論,.

(3)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形

三種情形。

 

 

 

 

 

【例2】(浙江湖州)已知:在矩形中,,.分別以所在直線為軸和軸,建立如圖所示的平面直角坐標(biāo)系.是邊上的一個動點(diǎn)(不與重合),過點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn)

(1)求證:的面積相等;

(2)記,求當(dāng)為何值時,有最大值,最大值為多少?

(3)請?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn),使得將沿對折后,點(diǎn)恰好落在上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

【思路點(diǎn)撥】(1)用的代數(shù)式表示的面積; (2)寫出兩點(diǎn)坐標(biāo)(含的代數(shù)式表示),利用三角形面積公式解之;(3)設(shè)存在這樣的點(diǎn),將沿對折后,點(diǎn)恰好落在邊上的點(diǎn),過點(diǎn),垂足為.證

 

 

 

 

 

 

 

【例3】(浙江嘉興)如圖,直角坐標(biāo)系中,已知兩點(diǎn),點(diǎn)在第一象限且為正三角形,的外接圓交軸的正半軸于點(diǎn),過點(diǎn)的圓的切線交軸于點(diǎn)

(1)求兩點(diǎn)的坐標(biāo);

(2)求直線的函數(shù)解析式;

(3)設(shè)分別是線段上的兩個動點(diǎn),且平分四邊形的周長.

試探究:的最大面積?

【思路點(diǎn)撥】(1)作

(2)連結(jié)A C,證CD‖OB.(3)通過

幾何圖形建立二次函數(shù)模型解之,注意

自變量的取值范圍。

 

 

 

【例4】(07杭州市) 在直角梯形中,,高(如圖1)。動點(diǎn)同時從點(diǎn)出發(fā),點(diǎn)沿運(yùn)動到點(diǎn)停止,點(diǎn)沿運(yùn)動到點(diǎn)停止,兩點(diǎn)運(yùn)動時的速度都是。而當(dāng)點(diǎn)到達(dá)點(diǎn)時,點(diǎn)正好到達(dá)點(diǎn)。設(shè)同時從點(diǎn)出發(fā),經(jīng)過的時間為時,的面積為(如圖2)。分別以為橫、縱坐標(biāo)建立直角坐標(biāo)系,已知點(diǎn)邊上從運(yùn)動時,的函數(shù)圖象是圖3中的線段。

(1)分別求出梯形中的長度;

(2)寫出圖3中兩點(diǎn)的坐標(biāo);

(3)分別寫出點(diǎn)邊上和邊上運(yùn)動時,的函數(shù)關(guān)系式(注明自變量的取值范圍),并在圖3中補(bǔ)全整個運(yùn)動中關(guān)于的函數(shù)關(guān)系的大致圖象。

 

 

 

 

 

 

 

【思路點(diǎn)撥】(1)設(shè)動點(diǎn)出發(fā)秒后,點(diǎn)到達(dá)點(diǎn)且點(diǎn)正好到達(dá)點(diǎn)時,由圖3知此時△ABC面積為30. (2)結(jié)合(1)的結(jié)論寫出兩點(diǎn)的坐標(biāo);(3)考慮當(dāng)點(diǎn)上時及當(dāng)點(diǎn)上時兩種的關(guān)于的函數(shù)關(guān)系式.

 

 

 

 

 

 

【學(xué)力訓(xùn)練】

1、(07臺州市) 如圖,四邊形是一張放在平面直角坐標(biāo)系中的矩形紙片,點(diǎn)軸上,點(diǎn)軸上,將邊折疊,使點(diǎn)落在邊的點(diǎn)處.已知折疊,且

(1)判斷是否相似?請說明理由;

(2)求直線軸交點(diǎn)的坐標(biāo);

(3)是否存在過點(diǎn)的直線,使直線、直線軸所圍成的三角形和直線、直線軸所圍成的三角形相似?如果存在,請直接寫出其解析式并畫出相應(yīng)的直線;如果不存在,請說明理由.

 

 

 

2、(浙江衢州)已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖所示,四個頂點(diǎn)的坐標(biāo)分別為O(0,0),A(10,0),B(8,),C(0,),點(diǎn)T在線段OA上(不與線段端點(diǎn)重合),將紙片折疊,使點(diǎn)A落在射線AB上(記為點(diǎn)A′),折痕經(jīng)過點(diǎn)T,折痕TP與射線AB交于點(diǎn)P,設(shè)點(diǎn)T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S;

(1)求∠OAB的度數(shù),并求當(dāng)點(diǎn)A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;

(2)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;

(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由。

 

 

 

 

 

 

3、(江蘇鹽城)如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A

的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個動點(diǎn),連結(jié)AP,并把△AOP繞著點(diǎn)A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.

(1)求直線AB的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動到點(diǎn)(,0)時,求此時DP的長及點(diǎn)D的坐標(biāo);

(3)是否存在點(diǎn)P,使△OPD的面積等于,若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

4、(四川樂山)在平面直角坐標(biāo)系中△ABC的邊AB在x軸上,且OA>OB,以AB為直徑的圓過點(diǎn)C,若C的坐標(biāo)為(0,2),AB=5, A,B兩點(diǎn)的橫坐標(biāo)XA,XB是關(guān)于X的方程的兩根:

(1)求m,n的值;

(2)若∠ACB的平分線所在的直線交x軸于點(diǎn)D,試求直線對應(yīng)的一次函數(shù)的解析式;

(3)過點(diǎn)D任作一直線分別交射線CA,CB(點(diǎn)C除外)于點(diǎn)M,N,則的值是否為定值,若是,求出定值,若不是,請說明理由.

試題詳情

2008年全國各地中考試題壓軸題精選講座二

直角坐標(biāo)下通過幾何圖形列函數(shù)式問題

【知識縱橫】

以平面直角坐標(biāo)系為背景,通過幾何圖形運(yùn)動變化中兩個變量之間的關(guān)系建立函數(shù)關(guān)系式,進(jìn)一步研究幾何圖形的性質(zhì),體現(xiàn)了數(shù)形結(jié)合的思想方法。但在坐標(biāo)系中,每一個坐標(biāo)由一對的序?qū)崝?shù)對應(yīng),實(shí)數(shù)的正負(fù)之分,而線段長度值均為正的,注意這一點(diǎn),就可類似于講座一的方法解決。所列函數(shù)式有:反比例函數(shù)、一次函數(shù)、二次函數(shù)。

【典型例題】

【例1】(黑龍江齊齊哈爾)如圖,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)分別在軸,軸的正半軸上,且滿足

(1)求點(diǎn),點(diǎn)的坐標(biāo).

(2)若點(diǎn)點(diǎn)出發(fā),以每秒1個單位的速度沿射線運(yùn)動,連結(jié).設(shè)的面積為,點(diǎn)的運(yùn)動時間為秒,求的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(3)在(2)的條件下,是否存在點(diǎn),使以點(diǎn)為頂點(diǎn)的三角形與相似?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【思路點(diǎn)撥】(1)注意坐標(biāo)值與線段長度關(guān)系;

(2)求得(3)分類討論。

 

     

                                                   

 

                                                  

 

 

 

 

 

 

 

 

【例2】(廣東東莞)將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點(diǎn)E,連結(jié)CD.

(1)填空:如圖1,AC=         ,BD=         ;四邊形ABCD是       梯形.

(2)請寫出圖1中所有的相似三角形(不含全等三角形).

(3)如圖2,若以AB所在直線為軸,過點(diǎn)A垂直于AB的直線為軸建立如圖10

的平面直角坐標(biāo)系,保持ΔABD不動,將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點(diǎn)P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

 

 

 

 

   

                圖1

【思路點(diǎn)撥】(2)有9對相似三角形. ;(3)用t的變量表示相關(guān)線段,利用面積公式計算,注意自變量的取值范圍。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【例3】(河北)如圖,直角梯形中,,為坐標(biāo)原點(diǎn),點(diǎn)軸正半軸上,點(diǎn)軸正半軸上,點(diǎn)坐標(biāo)為(2,2),∠= 60°,于點(diǎn).動點(diǎn)從點(diǎn)出發(fā),沿線段向點(diǎn)運(yùn)動,動點(diǎn)從點(diǎn)出發(fā),沿線段向點(diǎn)運(yùn)動,兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度.設(shè)點(diǎn)運(yùn)動的時間為秒.

(1)       求的長;

(2)       若的面積為(平方單位). 求之間的函數(shù)關(guān)系式.并求為何值時,    的面積最大,最大值是多少?

(3)       設(shè)交于點(diǎn).①當(dāng)△為等腰三角形時,求(2)中的值.

②探究線段長度的最大值是多少,直接寫出結(jié)論.

【思路點(diǎn)撥】(3)若為等腰三角形,分三種情況

討論,再進(jìn)行比較,從而求出線段長的最大值。

 

 

 

 

                                                               圖

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【例4】((甘肅蘭州)如圖1,是一張放在平面直角坐標(biāo)系中的矩形紙片,為原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上,,

(1)在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn)處,求兩點(diǎn)的坐標(biāo);

(2)如圖2,若上有一動點(diǎn)(不與重合)自點(diǎn)沿方向向點(diǎn)勻速運(yùn)動,運(yùn)動的速度為每秒1個單位長度,設(shè)運(yùn)動的時間為秒(),過點(diǎn)作的平行線交于點(diǎn),過點(diǎn)的平行線交于點(diǎn).求四邊形的面積與時間之間的函數(shù)關(guān)系式;當(dāng)取何值時,有最大值?最大值是多少?

(3)在(2)的條件下,當(dāng)為何值時,以為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)的時刻點(diǎn)的坐標(biāo).

【思路點(diǎn)撥】(1)折痕是四邊形的對稱軸

(2)四邊形為矩形.

(3)為等腰三角形分類討論。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【學(xué)力訓(xùn)練】

1、(諸暨中學(xué))如圖,點(diǎn)A在Y軸上,點(diǎn)B在X軸上,且OA=OB=1,經(jīng)過原點(diǎn)O的直線L交線段AB于點(diǎn)C,過C作OC的垂線,與直線X=1相交于點(diǎn)P,現(xiàn)將直線L繞O點(diǎn)旋轉(zhuǎn),使交點(diǎn)C從A向B運(yùn)動,但C點(diǎn)必須在第一象限內(nèi),并記AC的長為t,分析此圖后,對下列問題作出探究:

(1)當(dāng)△AOC和△BCP全等時,求出t的值。

(2)通過動手測量線段OC和CP的長來判斷它們之間的

大小關(guān)系?并證明你得到的結(jié)論。

(3)①設(shè)點(diǎn)P的坐標(biāo)為(1,b),試寫出b關(guān)于t的函數(shù)

關(guān)系式和變量t的取值范圍。②求出當(dāng)△PBC為等腰三角形時點(diǎn)P的坐標(biāo)。

2、 ( 湖北天門)如圖①,在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)坐標(biāo)為(0,4).動

點(diǎn)M從點(diǎn)O出發(fā),沿OA方向以每秒1個單位長度的速度向終點(diǎn)A運(yùn)動;同時,動點(diǎn)N從點(diǎn)A出發(fā)沿AB方向以每秒個單位長度的速度向終點(diǎn)B運(yùn)動.設(shè)運(yùn)動了x秒.

(1)點(diǎn)N的坐標(biāo)為(________________,________________);(用含x的代數(shù)式表示)

(2)當(dāng)x為何值時,△AMN為等腰三角形?

(3)如圖②,連結(jié)ON得△OMN,△OMN可能為正三角形嗎?若不能,點(diǎn)M的運(yùn)動速度不變,

試改變點(diǎn)N的運(yùn)動速度,使△OMN為正三角形,并求出點(diǎn)N的運(yùn)動速度和此時x的值.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3、 (吉林省長春市) 如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于兩點(diǎn),以為邊作矩形,的中點(diǎn).以為斜邊端點(diǎn)作等腰直角三角形,點(diǎn)在第一象限,設(shè)矩形重疊部分的面積為

(1)求點(diǎn)的坐標(biāo).

(2)當(dāng)值由小到大變化時,求的函數(shù)關(guān)系式.

(3)若在直線上存在點(diǎn),

使等于,請直接寫出的取值范圍.

(4)在值的變化過程中,若為等腰三

角形,請直接寫出所有符合條件的值.

 

 

 

 

 

 

 

 

 

 

 

 

 

&n

試題詳情


同步練習(xí)冊答案