解 (an+bn)2=(an2+2anbn+bn2) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-x(e是自然對數(shù)的底數(shù))
(Ⅰ)求f(x)的最小值;
(Π)不等式f(x)>ax的解集為P,若M={x|
1
2
≤x≤2}
,且M∩P≠∅,求實數(shù)a的取值范圍;
(Ⅲ)已知n∈N+,且Sn=
n
0
f(x)dx
,是否存在等差數(shù)列an和首項為f(1)公比大于0的等比數(shù)列bn,使數(shù)列an+bn的前n項和等于Sn

查看答案和解析>>

在等差數(shù)列{an}中,a1=1,公差d≠0,a22=a1•a4,設數(shù)列{22-an}的前n項和為Sn
(1)解不等式:
Sn-am
Sn+1-am
1
2
,求正整數(shù)m,n的值;
(2)若數(shù)列{bn}滿足b1=4,bn+1=bn2-an•bn+1,求證:
1
1+b1
+
1
1+b2
+…+
1
1+bn
2
5

查看答案和解析>>

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項an;并用解析幾何中的有關思想方法來解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學過的知識,把問題轉化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn

查看答案和解析>>

數(shù)列{an}的前n項和為Sn,已知Sn=
n
2
 
+3n
2
,數(shù)列{bn}滿足(bn+1)2=bnbn+2(n∈N*)且b2=4,b5=32.
(1)分別求出數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前n項和Tn
(3)設P=
n2
4
+24n-
7
12
,(n∈N*)
,當n為奇數(shù)時,試判斷方程Tn-P=2013是否有解,若有請求出方程的解,若沒有,請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=x2+ax+c,滿足不等式f(x)<0的解集是(-2,0),
(Ⅰ)求f(x)的解析式;
(Ⅱ)若點(an,an+1)(n∈N*)在函數(shù)f(x)的圖象上,且a1=99,令bn=lg(1+an),
①求證:數(shù)列{bn}為等比數(shù)列;
②令cn=nbn,數(shù)列{cn}的前n項和為Sn,是否存在正實數(shù)k使得不等式kn2bn>Sn+bn+2-2對任意n∈N*的恒成立?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案