如圖所示.已知圓為圓上一動(dòng)點(diǎn).點(diǎn)P在AM上. 查看更多

 

題目列表(包括答案和解析)

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足的軌跡為曲線E.

(I)求曲線E的方程;                                               

(II)過點(diǎn)A且傾斜角是45°的直線l交曲線E于兩點(diǎn)H、Q,求|HQ|.

查看答案和解析>>

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

(1)求點(diǎn)的軌跡曲線的方程;

(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)

(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

(1)求點(diǎn)的軌跡曲線的方程;

(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)

(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

(12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線.

(1)求曲線的方程;

(2)若直線與(1)中所求點(diǎn)的軌跡交于不同兩點(diǎn)是坐標(biāo)原點(diǎn),且,求△的面積的取值范圍.

  

 

 

 

 

查看答案和解析>>

如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).

(1)求點(diǎn)的軌跡曲線的方程;
(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)
(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).

查看答案和解析>>

1、A   2、B   3、B   4、D    5、C    6、C

7、    8、     9、0      10、 

11、【解】(1)

∴NP為AM的垂直平分線,∴|NA|=|NM|.…………………………2分

∴動(dòng)點(diǎn)N的軌跡是以點(diǎn)C(-1,0),A(1,0)為焦點(diǎn)的橢圓.

且橢圓長軸長為焦距2c=2.   ……………5分

∴曲線E的方程為………………6分

(2)當(dāng)直線GH斜率存在時(shí),

設(shè)直線GH方程為

設(shè)……………………8分

……………………10分

又當(dāng)直線GH斜率不存在,方程為

……………………………………12分

12、【解】(1)由題設(shè)知

由于,則有,所以點(diǎn)A的坐標(biāo)為

所在直線方程為, ………………………………3分

所以坐標(biāo)原點(diǎn)O到直線的距離為,

,所以,解得

所求橢圓的方程為.……………………………………………5分

(2)由題意知直線l的斜率存在,設(shè)直線l的方程為,則有,

設(shè),由于,

,解得     …………………8分

又Q在橢圓C上,得,

解得, …………………………………………………………………………10分

故直線l的方程為,

.   ……………………………………………12分

 


同步練習(xí)冊(cè)答案