題目列表(包括答案和解析)
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調(diào)遞增,又
① 當,即時,在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
某學生對函數(shù)的性質(zhì)進行研究,得出如下的結(jié)論:
①函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;
②點是函數(shù)圖像的一個對稱中心;
③函數(shù) 圖像關(guān)于直線對稱;
④存在常數(shù),使對一切實數(shù)均成立.
其中正確的結(jié)論是 .
已知冪函數(shù),且在上單調(diào)遞增.
(Ⅰ)求實數(shù)的值,并寫出相應(yīng)的函數(shù)的解析式;
(II)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(III)試判斷是否存在正數(shù),使函數(shù)在區(qū)間上的值域為. 若存在,求出的值;若不存在,請說明理由
下圖展示了一個由區(qū)間(其中為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間中的實數(shù)對應(yīng)線段上的點,如圖1;將線段圍成一個離心率為的橢圓,使兩端點、恰好重合于橢圓的一個短軸端點,如圖2 ;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在軸上,已知此時點的坐標為,如圖3,在圖形變化過程中,圖1中線段的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線與直線交于點,則與實數(shù)對應(yīng)的實數(shù)就是,記作,
現(xiàn)給出下列5個命題
①; ②函數(shù)是奇函數(shù);③函數(shù)在上單調(diào)遞增; ④.函數(shù)的圖象關(guān)于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是: ( )
A.①③⑤ B.②③④ C.②③⑤ D.③④⑤
已知冪函數(shù),且在上單調(diào)遞增.
(1)求實數(shù)的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)若在區(qū)間上不單調(diào),求實數(shù)的取值范圍;
(3)試判斷是否存在正數(shù),使函數(shù)在區(qū)間上的值域為若存在,求出的值;若不存在,請說明理由.
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。
題號
1
2
3
4
5
6
7
8
9
10
答案
二、填空題:(本大題共5個小題,每小題5分,共25分,)
11. 12. 13. 14. 15.
三、解答題:
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com