如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點C在上,CD⊥OA,垂足為點D,當(dāng)△OCD的面積最大時,圖中陰影部分的面積為 ▲ .
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,在平面直角坐標(biāo)系中,已知點A(2,0),點B(0,4),點E(0,1),如圖②,將△AEO沿x軸向左平移得到△A′E′O′,連接A′B、BE′。
(1)設(shè)AA′=m(m >0),試用含m的式子表示,并求出使取得最小值時點E′的坐標(biāo);
(2)當(dāng)A′B+BE′取得最小值時,求點E′的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B的坐標(biāo)分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為點C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時,點Q與點D重合?
(2)當(dāng)t為何值時,DQ=2AD?
(3)求線段QC所在直線與⊙P相切時t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角坐標(biāo)系中,點A(0,4),B(-3,4),C(-6,0),動點P從點A出發(fā)以1個單位/秒的速度在y軸上向下運動,動點Q同時從點C出發(fā)以2個單位/秒的速度在x軸上向右運動,過點P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點P與點O重合時,兩動點均停止運動.設(shè)運動的時間為t秒.
(1)當(dāng)t=1時,求線段DP的長;
(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;
(3)運動過程中是否存在某一時刻,使△ODQ與△ABC相似?若存在,請求出所有滿足要求的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在如圖所示的平面直角坐標(biāo)系中,點P是直線y=x上的動點,A(1,0),B(2,0)是x軸上的兩點,則PA+PB的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當(dāng)點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角梯形ABCD中,AD∥CB, ,動點P從點D出發(fā),沿射線DA的方向以每秒2個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒一個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當(dāng)點Q運動到點B時,點P隨之停止運動.設(shè)運動的時間為t(秒).
(1)設(shè)△BPQ的面積為S,求S與t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時,四邊形ABQP是平行四邊形.
(3)當(dāng)t為何值時,以B,P,Q三點為頂點的三角形是等腰三角形?
【
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與y軸交于點C,點P是拋物線上的一個動點,點P關(guān)于y軸的對稱點Q,連接PO,PC,QO,QC,得到四邊形,是否存在點P,使四邊形為菱形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知點A(0,0),B(0,3),C(4,t+3),D(4,t). 記N(t)為□ABCD內(nèi)部(不含邊界)整點的個數(shù),其中整點是指橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點,則N(t)所有可能的值為【 】
A.6、7 B.7、8 C.6、7、8 D.6、8、9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com