【題目】?jī)蓧K等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F(xiàn)是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn).

(1)如圖1,若點(diǎn)D、E分別在AC、BC的延長(zhǎng)線上,通過(guò)觀察和測(cè)量,猜想FH和FG的數(shù)量關(guān)系為和位置關(guān)系為;
(2)如圖2,若將三角板△DEC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)至ACE在一條直線上時(shí),其余條件均不變,則(1)中的猜想是否還成立,若成立,請(qǐng)證明,不成立請(qǐng)說(shuō)明理由;
(3)如圖3,將圖1中的△DEC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3,(1)中的猜想還成立嗎?直接寫(xiě)出結(jié)論,不用證明.

【答案】
(1)相等;垂直
(2)

解:答:成立,

證明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,

∴△ACD≌△BCE

∴AD=BE,

由(1)知:FH= AD,F(xiàn)H∥AD,F(xiàn)G= BE,F(xiàn)G∥BE,

∴FH=FG,F(xiàn)H⊥FG,

∴(1)中的猜想還成立.


(3)

解:答:成立,結(jié)論是FH=FG,F(xiàn)H⊥FG.

連接AD,BE,兩線交于Z,AD交BC于X,

同(1)可證

∴FH= AD,F(xiàn)H∥AD,F(xiàn)G= BE,F(xiàn)G∥BE,

∵三角形ECD、ACB是等腰直角三角形,

∴CE=CD,AC=BC,∠ECD=∠ACB=90°,

∴∠ACD=∠BCE,

在△ACD和△BCE中

,

∴△ACD≌△BCE,

∴AD=BE,∠EBC=∠DAC,

∵∠DAC+∠CXA=90°,∠CXA=∠DXB,

∴∠DXB+∠EBC=90°,

∴∠EZA=180°﹣90°=90°,

即AD⊥BE,

∵FH∥AD,F(xiàn)G∥BE,

∴FH⊥FG,

即FH=FG,F(xiàn)H⊥FG,

結(jié)論是FH=FG,F(xiàn)H⊥FG


【解析】(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中點(diǎn),H是AE的中點(diǎn),G是BD的中點(diǎn),
∴FH= AD,F(xiàn)H∥AD,F(xiàn)G= BE,F(xiàn)G∥BE,
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
所以答案是:相等,垂直.
【考點(diǎn)精析】本題主要考查了等腰直角三角形和三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線相交于點(diǎn),的平分線,

1)若,請(qǐng)求出的度數(shù);

2平分嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某廠生產(chǎn)的一批軸進(jìn)行檢驗(yàn),檢驗(yàn)結(jié)果中軸的直徑的各組頻數(shù)、頻率如表(每組含前一個(gè)邊界值,不含后一個(gè)邊界值),且軸直徑的合格標(biāo)準(zhǔn)為(單位:mm),有下列結(jié)論:①這批被檢驗(yàn)的軸總數(shù)為50根;②a+b=0.44x=y;③這批軸中沒(méi)有直徑恰為100.15mm的軸;④這一批軸的合格率是82%,若該廠生產(chǎn)1000根這樣的軸,則其中恰好有180根不合格. 其中正確的有______個(gè).

組別(mm)

頻數(shù)

頻率

99.55~99.70

x

a

99.70~99.85

5

0.1

99.85~100.00

21

0.42

100.00~100.15

20

b

100.15~100.30

0

0

100.30~100.45

y

0.04

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五邊形ABCDE的內(nèi)角都相等,且AB=BC,AC=AD,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為1的等邊ABC的邊AB上一點(diǎn)P,PEACE,QBC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),PQAC邊于D,DE的長(zhǎng)為( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確!鱋BC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控△OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測(cè)雷達(dá),雷達(dá)的有效探測(cè)范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測(cè))
(1)若三艘軍艦要對(duì)△OBC海域進(jìn)行無(wú)盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測(cè)半徑r至少為多少海里?
(2)現(xiàn)有一艘敵艦A從東部接近△OBC海域,在某一時(shí)刻軍艦B測(cè)得A位于北偏東60°方向上,同時(shí)軍艦C測(cè)得A位于南偏東30°方向上,求此時(shí)敵艦A離△OBC海域的最短距離為多少海里?
(3)若敵艦A沿最短距離的路線以20 海里/小時(shí)的速度靠近△OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問(wèn)B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點(diǎn)P是BC上的一點(diǎn).

(1)請(qǐng)寫(xiě)出圖中∠1的一對(duì)同位角,一對(duì)內(nèi)錯(cuò)角,一對(duì)同旁內(nèi)角;

(2)求∠EFC與∠E的度數(shù);

(3)若∠BFP=46°,請(qǐng)判斷CE與PF是否平行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠BAC的平分線與BC的垂直平分線相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB =12,AC =6,則BE= ___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)探究題
(1)操作發(fā)現(xiàn):
在△ABC中,AB=AC,∠BAC=90°,D在線段BC上(不與點(diǎn)B重合),連接AD,將線段AD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,如圖①所示,請(qǐng)直接寫(xiě)出線段CE和BD的位置關(guān)系和數(shù)量關(guān)系.
(2)猜想論證:
在(1)的條件下,當(dāng)D在線段BC的延長(zhǎng)線上時(shí),請(qǐng)你在圖②中畫(huà)出圖形并判斷(1)中的結(jié)論是否成立,并證明你的判斷.

(3)拓展延伸:
如圖③,若AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng),試探究:當(dāng)銳角∠ACB等于度時(shí),線段CE和BD之間的位置關(guān)系仍成立(點(diǎn)C、E重合除外)?此時(shí)若作DF⊥AD交線段CE于點(diǎn)F,且當(dāng)AC=3 時(shí),請(qǐng)直接寫(xiě)出線段CF的長(zhǎng)的最大值是

查看答案和解析>>

同步練習(xí)冊(cè)答案