【題目】某商場同時購進甲、乙兩種商品共件,其進價和售價如右表,設(shè)其中甲種商品購進件.

(1)直接寫出購進乙種商品的件數(shù);(用含的代數(shù)式表示)

(2)若設(shè)該商場售完這件商品的總利潤為元.

①求的函數(shù)關(guān)系式;

②該商品計劃最多投入元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?

【答案】(1)購進乙種商品的件數(shù)是(200﹣x)件;(2)y=﹣60x+28000(0≤x≤200);②該商場獲得的最大利潤為22000元.

【解析】分析:(1)同時購進甲、乙兩種商品共件,甲種商品購進, 購進乙種商品的件數(shù)是(200x)件;

(2)①根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關(guān)系式,并化簡;

②根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;

詳解:(1)購進乙種商品的件數(shù)是件;

(2) ①根據(jù)題意得:y=(16080)x+(240100)(200x),

=60x+28000,

yx的函數(shù)關(guān)系式為:y=60x+28000;

解得:

∴至少要購進100件甲商品,

y=60x+28000,

60<0,

yx的增大而減小,

∴當x=100時,y有最大值,

y=60×100+28000=22000,

∴若售完這些商品,則商場可獲得的最大利潤是22000元;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2018次運動后,動點P的坐標是_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中解為x=3的方程是( 。

A. 3x+1=5x-5 B. 2(x+3)=-x+9

C. 3(1-2x)-2(x+3)=0 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是ts.過點DDF⊥BC于點F,連接DE、EF

1)用t的代數(shù)式表示:AE=   ;DF=   ;

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示已知點C是線段AB上一點,點M,N,P分別是線段AC,BC,AB的中點.

(1)若AB=12 cm,則MN的長度是______cm;

(2)若AC=3 cm,CP=1 cm,求線段PN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為直角△ABC的斜邊AB上一點,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好與B重合,聯(lián)結(jié)CD交BE于F,如果AC═8,tanA═ ,那么CF:DF═

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,某容器由A、B、C三個長方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是容器容積的(容器各面的厚度忽略不計).現(xiàn)以速度v(單位:cm3/s)均勻地向容器注水,直至注滿為止.圖2是注水全過程中容器的水面高度h(單位:cm)與注水時間t(單位:s)的函數(shù)圖象

⑴在注水過程中,注滿A所用時間為______s,再注滿B又用了_____s;

⑵求A的高度hA及注水的速度v;

⑶求注滿容器所需時間及容器的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】適合下列條件的△ABC中,直角三角形的個數(shù)為(

a=,b=,c=; ②a=b,A=45°; ③a=2,b=2,c=;④∠A=27°,∠B=63°;⑤a=9,b=12,c=15

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案