【題目】已知:如圖在菱形ABCD中,AB=4,∠DAB=30°,點E是AD的中點,點M是的一個動點(不與點A重合),連接ME并廷長交CD的延長線于點N連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形;(2)當AM為何值時,四邊形AMDN是矩形并說明理由.
【答案】(1)見解析;(2),四邊形AMDN是矩形,見解析.
【解析】
(1)根據(jù)菱形的性質(zhì)可得ND∥AM,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠NDE=∠MAE,∠DNE=∠AME,根據(jù)中點的定義求出DE=AE,然后利用“角角邊”證明△NDE和△MAE全等,根據(jù)全等三角形對應邊相等得到ND=MA,然后利用一組對邊平行且相等的四邊形是平行四邊形證明;
(2)根據(jù)矩形的性質(zhì)得到DM⊥AB,結(jié)合∠DAB=30°,由直角三角形30°角所對的直角邊等于斜邊的一半解答.
(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM.
∴∠NDE=∠MAE,∠DNE=∠AME.
∵點E是AD中點,
∴DE=AE.
在△NDE和△MAE中,
,
∴△NDE≌△MAE(AAS).
∴ND=MA.
∴四邊形AMDN是平行四邊形;
(2)解:當AM=2時,四邊形AMDN是矩形.理由如下:
∵四邊形ABCD是菱形,
∴AD=AB=2,
∵平行四邊形AMDN是矩形,
∴∠AMD=90°.
∵∠DAB=30°,
∴MD=AD=AB=2.
在直角△AMD中,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設點P運動的時間是t秒.將線段CP的中點繞點P按順時針方向旋轉(zhuǎn)90°得點D,點D隨點P的運動而運動,連接DP、DA.
(1)請用含t的代數(shù)式表示出點D的坐標;
(2)求t為何值時,△DPA的面積最大,最大為多少?
(3)在點P從O向A運動的過程中,△DPA能否成為直角三角形?若能,求t的值.
若不能,請說明理由;
(4)請直接寫出隨著點P的運動,點D運動路線的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(-5,0),B(-3,0),點C在y軸的正半軸上,∠CBO=45°,CD∥AB.∠CDA=90°.點P從點Q(4,0)出發(fā),沿x軸向左以每秒1個單位長度的速度運動,運動時時間t秒.
(1)求點C的坐標;
(2)當∠BCP=15°時,求t的值;
(3)以點P為圓心,PC為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形ABCD的邊(或邊所在的直線)相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】情景觀察:如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.
①寫出圖1中所有的全等三角形 ;
②線段AF與線段CE的數(shù)量關(guān)系是 ,并寫出證明過程.
問題探究:
如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.
求證:AE=2CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果2b=n,那么稱b為n的布谷數(shù),記為b=g(n),如g(8)=g(23)=3.
(1)根據(jù)布谷數(shù)的定義填空:g(2)= ,g(32)= .
(2)布谷數(shù)有如下運算性質(zhì):若m,n為正數(shù),則g(mn)=g(m)+g(n),g()=g(m)﹣g(n).根據(jù)運算性質(zhì)填空:= ,(a為正數(shù)).若g(7)=2.807,則g(14)= ,g()= .
(3)下表中與數(shù)x對應的布谷數(shù)g(x)有且僅有兩個是錯誤的,請指出錯誤的布谷數(shù),要求說明你這樣找的理由,并求出正確的答案(用含a,b的代數(shù)式表示)
x | 3 | 6 | 9 | 27 | ||
g(x) | 1﹣4a+2b | 1﹣2a+b | 2a﹣b | 3a﹣2b | 4a﹣2b | 6a﹣3b |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A、∠B、∠C所對的邊分別是a、b、c,在下列關(guān)系中,不屬于直角三角形的是( )
A. b2=a2﹣c2 B. a:b:c=3:4:5
C. ∠A﹣∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線 AB與CD相交于O,OE是∠COB的平分線,OE⊥OF.∠AOD=74°
(1)求∠BOE的度數(shù);
(2)試說明OF平分∠AOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖為2002年世界數(shù)學家大會的會標,它是用四個形狀相同、大小相等的直角三角形拼成的正方形,請通過圖形的運動,在右側(cè)網(wǎng)格中補全此會標.
(1)問此正方形會標是旋轉(zhuǎn)對稱圖形嗎?答:______.
(2)若會標中直角三角形的兩條直角邊長分別為和,請用含(其中)的代數(shù)式表示出此正方形會標的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com