9.一個不透明的袋里裝有2個紅球,1個白球,1個黃球,它們除顏色外其余都相同.
(1)求從袋中摸出一個球是黃球的概率.
(2)摸出一個球,記下顏色后不放回,攪拌均勻,再摸出1個球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表).

分析 (1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出的球恰好顏色不同的結(jié)果數(shù),然后根據(jù)概率公式求解.

解答 解:(1)從袋中摸出一個球是黃球的概率=$\frac{1}{2+1+1}$=$\frac{1}{4}$;
(2)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中兩次摸出的球恰好顏色不同的結(jié)果數(shù)為10,
所以兩次摸出的球恰好顏色不同的概率=$\frac{10}{12}$=$\frac{5}{6}$.

點評 本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

19.下列變形:
①a(x+y)=ax+ay;
②x2-4x+4=x(x-4)+4;
③10x2-5x=5x(2x-1);
④x2-16+3x=(x+4)(x-4)+3x,
其中屬于因式分解的有③.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.計算:8101×0.125100=8.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,△ABC是等腰直角三角形,點D是斜邊AB邊上一動點,CE⊥CD(點E在CD右側(cè)),CD=CE,DE交BC于F.
(1)求證:△ACD∽△BDF;
(2)若$\frac{BF}{CF}$=$\frac{3}{5}$,DF<EF,求$\frac{DF}{EF}$的值;
(3)若AC=18$\sqrt{2}$、CD=6$\sqrt{13}$,求△CDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.為倡導(dǎo)綠色出行,平陽縣在昆陽鎮(zhèn)設(shè)立了公共自行車服務(wù)站點,小明對某站點公共自行車的租用情況進行了調(diào)查,將該站點一天中市民每次租用公共自行車的時間t(單位:分)(t≤120)分成A,B,C,D四個組進行各組人次統(tǒng)計,并繪制了如下的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)該站點一天中租用公共自行車的總?cè)舜螢?0,表示A的扇形圓心角的度數(shù)是108°.
(2)補全條形統(tǒng)計圖.
(3)考慮到公共自行車項目是公益服務(wù),公共自行車服務(wù)公司規(guī)定:市民每次使用公共自行收費2元,已知昆陽鎮(zhèn)每天租用公共自行車(時間在2小時以內(nèi))的市民平均有5000人次,據(jù)此估計公共自行車服務(wù)公司每天可收入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.已知點(3-2k2,4k-3)在第一象限角平分線上,則k=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.方程$\frac{1}{{x}^{2}+2x+1}$+$\frac{4}{x+2{x}^{2}+{x}^{3}}$=$\frac{5}{2x+2{x}^{2}}$的解為x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.在一平直河岸l同側(cè)有A,B兩個村莊,A,B到l的距離分別是3km和2km,AB=akm(a>1).現(xiàn)計劃在河岸l上建一抽水站P,用輸水管向兩個村莊供水.

方案設(shè)計
某班數(shù)學(xué)興趣小組設(shè)計了兩種鋪設(shè)管道方案:圖1是方案一的示意圖,設(shè)該方案中管道長度為d1,且d1=PB+BA(km)(其中BP⊥l于點P);圖2是方案二的示意圖,設(shè)該方案中管道長度為d2,且d2=PA+PB(km)(其中點A′與點A關(guān)于l對稱,A′B與l交于點P).
觀察計算
(1)在方案一中,d1=a+2km(用含a的式子表示)
(2)在方案二中,組長小宇為了計算d2的長,作了如圖3所示的輔助線,請你按小宇同學(xué)的思路計算,d2=$\sqrt{{a}^{2}+24}$km(用含a的式子表示).
探索歸納
(1)①當(dāng)a=4時,比較大小:d1<d2(填“>”、“=”或“<”);
②當(dāng)a=6時,比較大。篸1>d2(填“>”、“=”或“<”);
(2)請你參考方框中的方法指導(dǎo),就a(當(dāng)a>1時)的所有取值情況進行分析,要使鋪設(shè)的管道長度較短,
應(yīng)選擇方案一還是方案二?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD=2a,點E、F分別是BC、CD邊的中點.連接BF、DE交于點P,連接CP并延長交AB于點Q,連接AF,則下列結(jié)論中正確的有①②(寫出正確結(jié)論的序號)
①四邊形ABED為平行四邊形;
②CP平分∠BCD;
③四邊形QPDA為等腰梯形;
④S四邊形AQCD=$\frac{5}{3}$a2

查看答案和解析>>

同步練習(xí)冊答案