【題目】如圖,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB邊的中點,E是AC邊上一點,聯(lián)結DE,過點D作DF⊥DE交BC邊于點F,聯(lián)結EF.
(1)如圖1,當DE⊥AC時,求EF的長;
(2)如圖2,當點E在AC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;
(3)如圖3,聯(lián)結CD交EF于點Q,當△CQF是等腰三角形時,請直接寫出BF的長.
【答案】(1)EF=5;(2)不變,理由見解析;(3)BF的長為3或或.
【解析】試題分析:(1)由cosA=,根據(jù)銳角三角函數(shù)的定義可求可求AC=8,AE=4,在Rt△EDF中,由勾股定理求出DE=3,在Rt△AED中,由勾股定理求出EF的長;
(2)過點D作DH⊥AC,DG⊥BC,垂足分別為點H、G,由(1)可得DH=3,DG=4,再證△EDH∽△FDG,得到,然后根據(jù)正切定義求解;
(3)分QF=QC,FQ=FC,CF=CQ三種情況求解.
解:(1)∵∠ACB=90°,
∴,
∵AC=8,
∴AB=10,
∵D是AB邊的中點,
∴,
∵DE⊥AC,
∴∠DEA=∠DEC=90°,
∴,
∴AE=4,
∴CE=8﹣4=4,
∵在Rt△AED中,AE2+DE2=AD2,
∴DE=3,
∵DF⊥DE,
∴∠FDE=90°,
又∵∠ACB=90°,
∴四邊形DECF是矩形,
∴DF=EC=4,
∵在Rt△EDF中,DF2+DE2=EF2,
∴EF=5
(2)不變
如圖2,
過點D作DH⊥AC,DG⊥BC,垂足分別為點H、G,
由(1)可得DH=3,DG=4,
∵DH⊥AC,DG⊥BC,
∴∠DHC=∠DGC=90°
又∵∠ACB=90°,
∴四邊形DHCG是矩形,
∴∠HDG=90°,
∵∠FDE=90°,
∴∠HDG﹣∠HDF=∠EDF﹣∠HDF,
即∠EDH=∠FDG,
又∵∠DHE=∠DGF=90°
∴△EDH∽△FDG,
∴,
∵∠FDE=90°,
∴,
(3)①當QF=QC時,
∴∠QFC=∠QCF,
∵∠EDF+∠ECF=180°,
∴點D,E,C,F四點共圓,
∴∠ECQ=∠DFE,∠DFE+∠QFC=∠ECQ+∠QCF=∠ACB=90°,
即∠DFC=90°,
又∵∠ACB=90°,
∴,
∴,
②當FQ=FC時,
∴∠BCD=∠CQF,
∵點D是AB的中點,
∴BD=CD=AB=5,
∴∠BDC=∠BCD,
∴∠BCD=∠FCQ,∠BDC=∠CFQ,
∴△FQC∽△DCB,
由①知,點D,E,C,F四點共圓,
∴∠DEF=∠DCF,
∵∠DQE=∠FQC,
∴△FQC∽△DEQ,
即:△FQC∽△DEQ∽△DCB
∵在Rt△EDF中,,
∴設DE=3k,則DF=4k,EF=5k,
∵∠DEF=∠DCF=∠CQF=∠DQE,
∴DE=DQ=3k,
∴CQ=5﹣3k,
∵△DEQ∽△DCB,
∴,
∴,
∴,
∵△FQC∽△DCB,
∴,
∴,
解得,
∴,
∴,
③當CF=CQ時,如圖3,
∴∠BCD=∠CQF,
由②知,CD=BD,
∴∠BDC=∠BCD,
∵△EDQ∽△BDK,
在BC邊上截取BK=BD=5,過點D作DH⊥BC于H,
∴DH=AC=4,BH=BC=3,由勾股定理得,
同②的方法得,△CFQ∽△EDQ,
∴設DE=3m,則EQ=3m,EF=5m,
∴FQ=2m,
∵△EDQ∽△BDK,
∴,
∴DQ=m,
∴CQ=FC=5﹣m,
∵△CQF∽△BDK,
∴,
∴,
解得m=,
∴,
∴.
即:△CQF是等腰三角形時,BF的長為3或或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B.圖②是點F運動時,△FBC的面積y(cm)隨時間x(s)變化的關系圖象,則a的值是__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果把一個自然數(shù)各數(shù)位上的數(shù)字從最高位到個位依次排出的一串數(shù)字,與從個位到最高位依次排出的一串數(shù)字完全相問,那么我們把這樣的自然數(shù)稱為“和諧數(shù)”,例如自然數(shù)12321,從最高位到個位依次排出的一串數(shù)字是:1、2、3、2、1,從個位到最高位依次出的一串數(shù)字仍是:1、2、3、2、1,因此12321是一個“和諧數(shù)”.再如22、545、3883、345543、…,都是“和諧數(shù)”.
(1)請你直接寫出3個四位“和諧數(shù)”:_________________________________;
(2)設四位“和諧數(shù)”個位上的數(shù)字為a,十位上的數(shù)字為b,請你猜想任意一個四位“和諧數(shù)”能否被11整除?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學是一門充滿樂趣的學科,某校七年級小凱同學的數(shù)學學習小組遇到一個富有挑戰(zhàn)性的探宄問題,請你幫助他們完成整個探究過程;
(問題背景)
對于一個正整數(shù)n,我們進行如下操作:
(1)將n拆分為兩個正整數(shù)m1,m2的和,并計算乘積m1×m2;
(2)對于正整數(shù)m1,m2,分別重復此操作,得到另外兩個乘積;
(3)重復上述過程,直至不能再拆分為止,(即折分到正整數(shù)1);
(4)將所有的乘積求和,并將所得的數(shù)值稱為該正整數(shù)的“神秘值”,
請?zhí)骄坎煌牟鸱址绞绞欠裼绊懻麛?shù)n的“神秘值”,并說明理由.
(嘗試探究):
(1)正整數(shù)1和2的“神秘值”分別是
(2)為了研究一般的規(guī)律,小凱所在學習小組通過討論,決定再選擇兩個具體的正整數(shù)6和7,重復上述過程
探究結論:
如圖所示,是小凱選擇的一種拆分方式,通過該拆分方法得到正整數(shù)6的“神秘值”為15.
請模仿小凱的計算方式,在如圖中,選擇另外一種拆分方式,給出計算正整數(shù)6的“神秘值”的過程;對于正整數(shù)7,請選擇一種拆分方式,在如圖中紿出計算正整數(shù)7的“神秘值”的過程.
(結論猜想)
結合上面的實踐活動,進行更多的嘗試后,小凱所在學習小組猜測,正整數(shù)n的“神秘值”與其折分方法無關.請幫助小凱,利用嘗試成果,猜想正整數(shù)n的“神秘值”的表達式為 ,(用含字母n的代數(shù)式表示,直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解并解答:
(1)我們把多項式及叫做完全平方式,在運用完全平方公式進行因式分解時,關鍵是判斷這個多項式是不是一個完全平方式.同樣地,把一個多項式進行部分因式分解可以來解決求代數(shù)式值的最大(或最小)值問題.
例如:①
∵是非負數(shù),即≥0
∴+2≥2
則這個代數(shù)式的最小值是_______,這時相應的的值是_______.
②
=
=
=
=
∵是非負數(shù),即≥0
∴-7≥-7
則這個代數(shù)式的最小值是____,這時相應的的值是______.
(2)仿照上述方法求代數(shù)式 的最大(或最小)值,并寫出相應的的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于A(-4,0),B(1,0),交y軸于C點,且OC=2OB.
(1)求拋物線的解析式;
(2)在直線BC上找點D,使△ABD為以AB為腰的等腰三角形,求D點的坐標;
(3)在拋物線上是否存在異于B的點P,過P點作PQ⊥AC于Q,使△APQ與△ABC相似?若存在,請求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0
(Ⅰ)當m=時,求方程的實數(shù)根;
(Ⅱ)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中央電視臺的“朗讀者”節(jié)目激發(fā)了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發(fā)現(xiàn),學生課外閱讀的本書最少的有5本,最多的有8本,并根據(jù)調查結果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計 | c | 1 |
(1)統(tǒng)計表中的a= ,b= ,c= ;
(2)請將頻數(shù)分布表直方圖補充完整;
(3)求所有被調查學生課外閱讀的平均本數(shù);
(4)若該校八年級共有1200名學生,請你分析該校八年級學生課外閱讀7本及以上的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com