【題目】近日天氣晴朗,某集團公司準備組織全體員工外出踏青.決定租用甲、乙、丙三種型號的巴士出行,甲型巴士每輛車的乘載量是乙型巴士的3倍,丙型巴士每輛可乘坐36人.現(xiàn)在旅游公司有甲、乙、丙型巴士若干輛,預計給該集團公司安排申型、丙型巴士共計8輛,其余員工安排乙型巴士,每輛巴士均滿載,這樣乘坐乙型巴士和丙型巴士的員工共296人.臨行前,突然有若干人因特殊原因請假,這樣一來剛好可以減少租用一輛乙型包士,且有一輛乙型巴士多出兩個空位,這樣甲、乙兩種型號巴士共計裝載178人;則該集團公司共有________名員工.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC.
(Ⅰ)如圖①,若∠P=20°,求∠BCO的度數(shù);
(Ⅱ)如圖②,過A作弦AD⊥OP于E,連接DC,若OE= CD,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已如兩個全等的等腰△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉(zhuǎn),線段DE,EF分別交線段CA,CB(或它們所在的直線)于M、N.
(1)如圖1,當線段EF經(jīng)過△ABC的頂點時,點N與點C重合,線段DE交AC于M,已知AC=BC=5,則MC= ;
(2)如果2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請?zhí)骄?/span>AM,MN,CN之間的等量關(guān)系,并說明理由;
(3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,則(2)中AM,MN,CN之間的等量關(guān)系還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)字的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項和(a+b)n的展開式的各項系數(shù),此三角形稱為“楊輝三角”,根據(jù)“楊輝三角”請計算(a+b)20的展開式中第三項的系數(shù)為( )
A.2019B.2018C.191D.190
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2020的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣ .
①求點D的坐標及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是3個,請直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式:
①;②;③;…
根據(jù)上述式子的規(guī)律,解答下列問題:
(1)第④個等式為 ;
(2)寫出第個等式,并驗證其正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點E、F分別為AD、DC上的動點,∠EBF=60°,點E從點A向點D運動的過程中,AE+CF的長度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長度相等 D. 保持不變且與AB的長度相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com