【題目】如圖,已知在矩形ABCD中,BC=2CD=2a,點(diǎn)E在邊CD上,在矩形ABCD的左側(cè)作矩形ECGF,使CG=2GF=2b,連接BD,CF,連結(jié)AF交BD于點(diǎn)H.

(1)求證:BD∥CF;
(2)求證:H是AF的中點(diǎn);
(3)連結(jié)CH,若HC⊥BD,求a:b的值.

【答案】
(1)解:∵四邊形ABCD、四邊形ECGF均為矩形,

∴∠G=∠DCB=90°.

∵BC=2CD=2a,CG=2GF=2b,

∴△FGC∽△DCB.

∴∠FCG=∠DBC.

∴BD∥CF.


(2)解:如圖1所示:連接AC,交BD于點(diǎn)O.

∵四邊形ABCD為矩形,

∴OC=OA.

又∵FC∥BD,

∴HF=AH.

∴點(diǎn)H是AF的中點(diǎn).


(3)解:如圖2所示:連接CH,CA,AC與BD交于點(diǎn)O.

由勾股定理可知:FC= b,AC= a.

∵四邊形ABCD為矩形,

∴DB=AC= a,CO= AC=

∵HO是△AFC的中位線,

∴HO= FC=

∴CH=

在△COH中,由勾股定理可知:HO2+CH2=OC2,即( 2+( 2=( 2

整理得:a2=

∴a:b=


【解析】(1)根據(jù)矩形的性質(zhì)得出∠G=∠DCB,再根據(jù)已知BC=2CD=2a,CG=2GF=2b,得出兩邊對(duì)應(yīng)成比例,因此可證明△FGC∽△DCB.得出對(duì)應(yīng)角相等,即可證得結(jié)論。
(2)連接AC,交BD于點(diǎn)O.根據(jù)矩形的性質(zhì)得出OC=OA.再根據(jù)平行線等分線段定理,即可得出結(jié)論。
(3)連接CH,CA,AC與BD交于點(diǎn)O.由勾股定理求出FC、AC的長,再根據(jù)矩形的對(duì)角線相等且互相平分,求得CO的長,然后根據(jù)三角形的中位線定理求出HO的長,又由直角三角形的兩個(gè)面積公式得出CH的長,在△COH中,由勾股定理可求得a:b的值。
【考點(diǎn)精析】本題主要考查了勾股定理的概念和三角形中位線定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小麗假期在娛樂場游玩時(shí),想要利用所學(xué)的數(shù)學(xué)知識(shí)測量某個(gè)娛樂場地所在山坡AE的高度.她先在山腳下的點(diǎn)E處測得山頂A的仰角是30°,然后,她沿著坡度i=1∶1的斜坡步行15分鐘到達(dá)C處,此時(shí),測得點(diǎn)A的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上,求出娛樂場地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù): ≈1.41).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算: ﹣2﹣1+| ﹣2|﹣3sin30°
(2)先化簡,再求值: ÷( ﹣1),其中a=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校興趣小組,對(duì)函數(shù)y|x1|+1的圖像和性質(zhì)進(jìn)行了研究,探究過程如下:

1)自變量的取值范圍是全體實(shí)數(shù),的幾組對(duì)應(yīng)值如表:

X

……

0

1

2

3

4

5

……

y

……

5

4

m

2

1

2

3

4

5

……

其中

2)在平面直角坐標(biāo)系中,畫出上表中對(duì)應(yīng)值為點(diǎn)的坐標(biāo),根據(jù)畫出的點(diǎn),畫出該函數(shù)的圖象;

3)根據(jù)畫出的函數(shù)圖像特征,仿照示例,完成下表中函數(shù)的變化規(guī)律:

序號(hào)

函數(shù)圖像特征

函數(shù)變化規(guī)律

示例1

在直線的右側(cè),函數(shù)圖像自左至右呈上升趨勢

當(dāng)時(shí)yx的增大而增大

在直線的右側(cè),函數(shù)圖像自左至右呈下降趨勢

示例2

函數(shù)圖像經(jīng)過點(diǎn)(-3,5

當(dāng)時(shí)

函數(shù)圖像的最低點(diǎn)是

當(dāng)時(shí),函數(shù)有最(大或。┲,此時(shí)

4)當(dāng)時(shí),的取值范圍是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題:

1)(﹣120182π10+(﹣2

2)(2a4)(a+5)﹣2a10

3)(2x+3y)(﹣2x+3y)﹣(x3y2

4)(4x3y6x2y2+12xy3÷2xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB、C的坐標(biāo)分別為(-13)、(-4,1)、(-2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是(

A.A14,4),C13,2B.A133),C12,1

C.A14,3),C12,3D.A134),C12,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,點(diǎn)OAC上一動(dòng)點(diǎn),過點(diǎn)O作直線MNBC,若MN交∠BCA的平分線于點(diǎn)E,交∠DCA的平分線于點(diǎn)F,連接AE、AF.

1)若CE=12CF=5,求OC的長;

2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)閱讀下面解方程組的方法,然后解決有關(guān)問題:解方程組時(shí),如果直接消元,那將會(huì)很繁瑣,若采用下面的解法,則會(huì)簡單很多.

解:①-②,得:2x+2y=2,即x+y=1③

③×16,得:16x+16y=16④

②-④,得:x=-1

將x=-1

代入③得:y=2

∴原方程組的解為:

(1)請(qǐng)你采用上述方法解方程組:

(2)請(qǐng)你采用上述方法解關(guān)于x,y的方程組,其中

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,C是⊙O上一動(dòng)點(diǎn)且∠ACB=45°,E、F分別是AC、BC的中點(diǎn),直線EF與⊙O交于點(diǎn)G、H.若⊙O的半徑為2,則GE+FH的最大值為

查看答案和解析>>

同步練習(xí)冊(cè)答案