11.下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的個(gè)數(shù)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

分析 根據(jù)中心對(duì)稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對(duì)稱圖形,以及軸對(duì)稱圖形的定義即可判斷出.

解答 解:第一個(gè)圖形是軸對(duì)稱圖形,不是中心對(duì)稱圖形,
最后三個(gè)圖形即是軸對(duì)稱圖形又是中心對(duì)稱圖形,
故選C.

點(diǎn)評(píng) 本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念:軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.點(diǎn)(-2,y1),(-1,y2),(1,y3)都在直線y=-3x+b上,則y1,y2,y3的大小關(guān)系是y1>y2>y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.解方程:$\sqrt{3x+13}+2x=x-3$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列圖形中,不是中心對(duì)稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

6.若一次函數(shù)y=(m-1)x-3m+2經(jīng)過第二,三,四象限,則m的取值范圍是$\frac{2}{3}<m<1$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.小強(qiáng)由甲地勻速步行到乙地后原路返回,小亮由甲地勻速步行經(jīng)乙地到丙地后原路返回,兩人同時(shí)出發(fā),他們離乙地的路程S(km)與步行的時(shí)間t(h)間的函數(shù)關(guān)系如圖所示,則下列說法中正確的個(gè)數(shù)有( 。
①甲、乙兩地之間的路程為8km
②乙、丙兩地之間的路程為2km
③小亮的平均速度為10千米/時(shí)
④小強(qiáng)的平均速度為4km/時(shí).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.先化簡,再求代數(shù)式1÷($\frac{{x}^{2}}{x-1}$+$\frac{1}{1-x}$)的值,其中a=2sin45°-$\sqrt{3}$tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知四邊形ABCD是正方形,點(diǎn)E、F分別在射線AB、射線BC上,AE=BF,DE與AF交于點(diǎn)O.

(1)如圖1,當(dāng)點(diǎn)E、F分別在線段AB、BC上時(shí),則線段DE與線段AF的數(shù)量關(guān)系是DE=AF,位置關(guān)系是DE⊥AF.
(2)將線段AE沿AF進(jìn)行平移至FG,連結(jié)DG.
①如圖2,當(dāng)點(diǎn)E在AB延長線上時(shí),補(bǔ)全圖形,寫出AD,AE,DG之間的數(shù)量關(guān)系.
②若DG=5$\sqrt{2}$,BE=1,直接寫出AD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.閱讀下面材料:
小偉遇到這樣一個(gè)問題:如圖1,在△ABC中,AB=AC,在邊AB上取點(diǎn)E,在邊AC上取點(diǎn)F,使BE=AF(E,F(xiàn)不是AB,AC邊的中點(diǎn)),連結(jié)EF.求證:EF>$\frac{1}{2}$BC.
 
小偉是這樣思考的:要想解決這個(gè)問題,首先應(yīng)想辦法移動(dòng)這些分散的線段,構(gòu)造全等三角形,再證明線段的關(guān)系.他先后嘗試了翻折,旋轉(zhuǎn),平移的方法,發(fā)現(xiàn)通過平移可以解決這個(gè)問題.他的方法是過點(diǎn)C作CH∥BE,并截取CH=BE,連接EH,構(gòu)造出平行四邊形EBCH,再連接FH,進(jìn)而證明△AEF≌△CFH,得到FE=FH,使問題得以解決(如圖2).
(1)請(qǐng)回答:在證明△AEF≌△CFH時(shí),CH=AF,∠HCF=∠A.
(2)參考小偉思考問題的方法,解決問題:
如圖3,△ABC中,∠BAC=90°,AB=AC,延長CA到點(diǎn)D,延長AB到點(diǎn)E,使AD=BE,∠DEA=15°.
判斷DE與BC的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案