分析 (1)根據(jù)等邊三角形的性質得到∠ABC=∠ACB=60°,利用等角的補角相等得到∠ABD=∠ACE,然后把題中已知的等式化為比例的形式,根據(jù)兩邊對應成比例,且夾角對應相等的兩三角形相似即可得證;
(2)由于∠DAE=∠ADB=120°,∠D=∠D,推出△ABD∽△EAD根據(jù)相似三角形的性質得到$\frac{AD}{DE}=\frac{DB}{AD}$,即可得到結論.
解答 證明:(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,AB=AC=BC,
∴∠ABD=∠ACE,
∵BC2=BD•CE,
∴AB•AC=BD•CE,
即$\frac{AB}{BD}=\frac{CE}{AC}$,
∴△ABD∽△ECA;
∴∠DAB=∠E,
∴∠DAE=∠DAB+∠BAC+∠EAC=120°;
(2)∵∠DAE=∠ADB=120°,∠D=∠D,
∴△ABD∽△EAD
∴$\frac{AD}{DE}=\frac{DB}{AD}$,
∴AD2=DB•DE.
點評 本題考查了等邊三角形性的性質以及相似三角形的判定,證明三角形相似的方法有:①兩角對應相等兩三角形相似;②兩邊對應成比例,且夾角對應相等兩三角形相似;③三邊對應成比例兩三角形相似.做題時要根據(jù)已知的條件,選擇合適的方法.把AB•AC=BD•CE化為比例的形式,得到兩三角形的對應邊成比例是解本題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com