10.(1)解方程:(x+1)2=5
(2)解方程:2x2+3=7x.

分析 (1)先開方,即可得出兩個(gè)一元一次方程,求出方程的解即可;
(2)移項(xiàng)后分解因式,即可得出兩個(gè)一元一次方程,求出方程的解即可.

解答 解:(1)(x+1)2=5
x+1=±$\sqrt{5}$,
x1=-1+$\sqrt{5}$,x2=-1-$\sqrt{5}$;

(2)2x2+3=7x,
2x2-7x+3=0,
(2x-1)(x-3)=0,
2x-1=0,x-3=0,
x1=$\frac{1}{2}$,x2=3.

點(diǎn)評 本題考查了解一元二次方程的應(yīng)用,能選擇適當(dāng)?shù)姆椒ń庖辉畏匠淌墙獯祟}的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,三角形ABC的三個(gè)頂點(diǎn)都在正方形方格的格點(diǎn)上
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)若△ABC各頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,請你再坐標(biāo)系中描出對應(yīng)的點(diǎn)A′、B′、C′,并依次連接這三個(gè)點(diǎn),則所得的△A′B′C′與原△ABC有怎樣的位置關(guān)系?
(3)在(2)的基礎(chǔ)上,縱坐標(biāo)都不變,橫坐標(biāo)都乘以-1,在同一坐標(biāo)系中描出對應(yīng)的點(diǎn)A″、B″、C″,并依次連接這三個(gè)點(diǎn),所得的△A″B″C″與原△ABC有怎樣的位置關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB,點(diǎn)A、B均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫出以AB為一邊的等腰△ABC,點(diǎn)C在小正方形的頂點(diǎn)上,且△ABC的面積為6.
(2)在方格紙中畫出△ABC的中線BD,并將△BCD向右平移1個(gè)單位長度得到△EFG(點(diǎn)B、C、D的對應(yīng)點(diǎn)分別為E、F、G),畫出△EFG,并直接寫出△BCD和△EFG重疊部分圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)y=ax+b的圖象經(jīng)過二、三、四象限,那么y=ax2+bx+1的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.若點(diǎn)A(3,3 )是正比例函數(shù)y=x上一點(diǎn),點(diǎn)M(m,0)與點(diǎn)N(0,n)分別在x軸與y軸上,且∠MAN=90°.

(1)如圖1,當(dāng)N點(diǎn)與原點(diǎn)O重合,求M點(diǎn)的坐標(biāo);
(2)如圖2,已知m,n都為正數(shù),連接MN,若MN=$\sqrt{30}$,求△MON的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解不等式組$\left\{\begin{array}{l}{5x-3≥2x}\\{\frac{3x-1}{2}<4}\end{array}\right.$,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(-2,0),B(-3,3),頂點(diǎn)為C.
(1)求拋物線的解析式;
(2)求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對稱軸上,且以A、O、D、E為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知關(guān)于x的方程x2-(2k-3)x+k2+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2
(1)求k的取值范圍;
(2)若x1、x2滿足|x1|+|x2|=2|x1x2|-3,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線y=-x-1與雙曲線$y=\frac{-2}{x}$交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo).
(2)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
(3)連接OA、OB,求△AOB的面積.

查看答案和解析>>

同步練習(xí)冊答案