【題目】1)如圖1,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),把ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)A與點(diǎn)C重合,點(diǎn)P的對(duì)應(yīng)點(diǎn)是Q.若PA3,PB2PC5,求∠BQC的度數(shù).

2)點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),若PA12PB5,PC13,求∠BPA的度數(shù).

【答案】1135°;(2150°

【解析】

1)根據(jù)題意得出△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)了90°,才使點(diǎn)AC重合,進(jìn)而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度數(shù),進(jìn)而求出∠BQC的度數(shù);

2)將△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)60°得到△CBP',由旋轉(zhuǎn)知,△APB≌△CP'B,即∠BPA=BP'CP'B=PB=5,P'C=PA=12,進(jìn)而得出△PBP'也是正三角形,即∠PP'B=60°,PP'=5

在△PP'C中,由勾股定理的逆定理得出∠PP'C=90°,從而可以得出結(jié)論.

1)連接PQ

由旋轉(zhuǎn)可知:QC=PA=3

又∵ABCD是正方形,

∴△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)了90°,才使點(diǎn)AC重合,

即∠PBQ=90°,∴∠PQB=45°,PQ=4

則在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2

即∠PQC=90°.

故∠BQC=90°+45°=135°.

2)將△ABP繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)60°得到△CBP',

此時(shí)點(diǎn)P的對(duì)應(yīng)點(diǎn)是點(diǎn)P'

由旋轉(zhuǎn)知,△APB≌△CP'B,即∠BPA=BP'CP'B=PB=5P'C=PA=12

又∵△ABC是正三角形,∴∠ABP+PBC=60°,

∴∠CBP'+PBC=60°,∴∠PBP'=60°.

又∵P'B=PB=5,∴△PBP'也是正三角形,即∠PP'B=60°,PP'=5

在△PP'C中,∵PC=13PP'=5,P'C=12,∴PC2=PP'2+P'C2

即∠PP'C=90°.

故∠BPA=BP'C=60°+90°=150°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=ax2+bx+c(其中a,b,c為常數(shù),且a≠0),樂(lè)老師在用描點(diǎn)法畫(huà)其的圖象時(shí),列出如下表格,根據(jù)該表格,下列判斷中不正確的是( 。

x

﹣1

0

1

2

y

﹣2

2.5

4

2.5

A. a<0

B. 一元二次方程ax2+bx+c﹣5=0沒(méi)有實(shí)數(shù)根

C. 當(dāng)x=3時(shí)y=﹣2

D. 一元二次方程ax2+bx+c=0有一根比3大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.

(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是    ;

(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名醫(yī)護(hù)人員來(lái)自同一所醫(yī)院的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC6,過(guò)對(duì)角線(xiàn)交點(diǎn)OEFACAD于點(diǎn)E,交BC于點(diǎn)F,則DE的長(zhǎng)是( 。

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,C為⊙O上一點(diǎn),∠OAC58°

(Ⅰ)如圖①,過(guò)點(diǎn)C作⊙O的切線(xiàn),與BA的延長(zhǎng)線(xiàn)交于點(diǎn)P,求∠P的大;

(Ⅱ)如圖②,PAB上一點(diǎn),CP延長(zhǎng)線(xiàn)與⊙O交于點(diǎn)Q.若AQCQ,求∠APC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知O的半徑為2,AB為直徑,CD為弦,AB與CD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,鏈接PC。

1求CD的長(zhǎng);

2求證:PC是O的切線(xiàn);

3點(diǎn)G為弧ADB的中點(diǎn),在PC延長(zhǎng)線(xiàn)上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E,交弧BC于點(diǎn)FF與B、C不重合。問(wèn)GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=x2與雙曲線(xiàn)y=(k≠0)相交于AB兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是3

(1)k的值;

(2)過(guò)點(diǎn)P(0,n)作直線(xiàn),使直線(xiàn)與x軸平行,直線(xiàn)與直線(xiàn)y=x2交于點(diǎn)M,與雙曲線(xiàn)y= (k≠0)交于點(diǎn)N,若點(diǎn)MN右邊,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BC為圓O直徑,BF與圓O相切于點(diǎn)B,CF交圓OAE為AC上一點(diǎn),使∠EBA=∠FBA,若EF6,tanF,則CE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=kx+b過(guò)x軸上的點(diǎn)A2,0),且與拋物線(xiàn)交于B,C兩點(diǎn),點(diǎn)B坐標(biāo)為(11.

1)求直線(xiàn)與拋物線(xiàn)對(duì)應(yīng)的函數(shù)表達(dá)式;

2)當(dāng)時(shí),請(qǐng)根據(jù)圖象寫(xiě)出自變量x的取值范圍;

3)拋物線(xiàn)上是否存在一點(diǎn)D,使?若存在,求出D點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案