【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)畫線段,且使,連接;
(2)線段的長(zhǎng)為________,的長(zhǎng)為________,的長(zhǎng)為________;
(3)是________三角形,四邊形的面積是________;
(4)若點(diǎn)為的中點(diǎn),為,則的度數(shù)為________.
【答案】(1)見(jiàn)解析;(2),,5;(3)直角,10;(4)
【解析】
(1)根據(jù)題意,畫出AD∥BC且使AD=BC,連接CD;
(2)在網(wǎng)格中利用直角三角形,先求AC 的值,再求出AC的長(zhǎng),CD的長(zhǎng),AD的長(zhǎng);
(3)利用勾股定理的逆定理判斷直角三角形,再求出四邊形ABCD的面積;
(4)把問(wèn)題轉(zhuǎn)化到Rt△ACB中,利用直角三角形斜邊上的中線可知BE=AE=EC,根據(jù)等腰三角形性質(zhì)即可解題.
(1)如圖所示:AD、CD為所求作
(2)根據(jù)勾股定理得:
故答案為:;;5
(3)∵,
∴
∴是直角三角形,∠ACD=90°
∴四邊形的面積是:
故答案為:直角;10
(4)∵,
∴四邊形ABCD是平行四邊形
∴AB//CD
∴∠BAC=∠ACD=90°
在Rt△ACD中,為的中點(diǎn)
∴AE=BE=CE, ∠ABC+∠ACB=90°
∴∠ACB=∠EAC=27°
∴∠ABC =63°
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形中,E為邊上一點(diǎn),連接,作的垂直平分線交于G,交于F,若,,則的長(zhǎng)為( )
A.B.C.10D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)為何值時(shí),方程有一根為零?
(2)為何值時(shí),方程的兩個(gè)根互為相反數(shù)?
(3)是否存在,使方程的兩個(gè)根互為倒數(shù)?若存在,請(qǐng)求出的值;不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決中小學(xué)大班額問(wèn)題,東營(yíng)市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬(wàn)元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬(wàn)元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬(wàn)元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)11800萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬(wàn)元和500萬(wàn)元.請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),已知B點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),求△MBC的面積的最大值,并求出此時(shí)M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),點(diǎn)E在射線AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n.
(1)如圖①,當(dāng)點(diǎn)D在邊BC上時(shí),且n等于30°,則∠BAD= ,∠CDE= ;
(2)如圖②,當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B左側(cè)時(shí),其他條件不變,請(qǐng)猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)?jiān)趫D③中畫出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,點(diǎn)在直線上,以點(diǎn)為圓心,適當(dāng)長(zhǎng)為半徑畫弧,分別交直線于點(diǎn),連接. 若,則的度數(shù)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E.F分別在邊AD、CD上,∠EBF=45°,則△EDF
的周長(zhǎng)等于_______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)反比例函數(shù)y=(k>1)和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y=的圖象上,PC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y=圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是_____(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com