【題目】如圖,△ABC是邊長(zhǎng)為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以點(diǎn)D為頂點(diǎn)作一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連接MN.
(1)求證:MN=BM+NC;
(2)求△AMN的周長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)6.
【解析】
(1)先證明△BDF≌△CDN,得出∠BDF=∠CDN,DF=DN,同時(shí)再證明△DMN≌△DMF,得出MN=MF=MB+BF=MB+CN.
(2)根據(jù)MN=MB+CN,得出△AMN的周長(zhǎng)為AM+AN+MN=AM+MB+AN+CN=AB+AC=6.
解:(1)∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.
∵△ABC是等邊三角形,∴∠ABC=∠BCA=60°,
∴∠DBA=∠DCA=90°,
延長(zhǎng)AB至F,使BF=CN,連接DF,
由SAS可證△BDF≌△CDN,
∴∠BDF=∠CDN,DF=DN,
∵∠MDN=60°,∴∠FDM=∠BDM+∠CDN=60°,
由SAS可證△DMN≌△DMF,
∴MN=MF=MB+BF=MB+CN
(2)由(1)知MN=MB+CN,
∴△AMN的周長(zhǎng)為AM+AN+MN=AM+MB+AN+CN=AB+AC=6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在圖中作出△ABC關(guān)于直線m對(duì)稱的△A′B′C′,并寫(xiě)出A′、B′、C′三點(diǎn)的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點(diǎn)P(x,y)關(guān)于直線m對(duì)稱點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若點(diǎn)M是y軸正半軸上任意一點(diǎn),過(guò)點(diǎn)M作PQ∥x軸,分別交函數(shù)y=(x<0)和y=(x>0)的圖象于點(diǎn)P和Q,連接OP和OQ.以下列結(jié)論:
①∠POQ不可能等于90°;
②;
③這兩個(gè)函數(shù)的圖象一定關(guān)于y軸對(duì)稱;
④若S△POM=S△QOM,則k1+k2=0;
⑤△POQ的面積是(|k1|+|k2|).
其中正確的有_____(填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某校招聘教師一名,現(xiàn)有甲、乙、丙三人通過(guò)專業(yè)知識(shí)、講課、答辯三項(xiàng)測(cè)試,他們各自的成績(jī)?nèi)缦卤硭荆?/span>
應(yīng)聘者 | 專業(yè)知識(shí) | 講課 | 答辯 |
甲 | 70 | 85 | 80 |
乙 | 90 | 85 | 75 |
丙 | 80 | 90 | 85 |
按照招聘簡(jiǎn)章要求,對(duì)專業(yè)知識(shí)、講課、答辯三項(xiàng)賦權(quán)5:4:1.請(qǐng)計(jì)算三名應(yīng)聘者的平均成績(jī),從成績(jī)看,應(yīng)該錄取誰(shuí)?
(2)我市舉行了某學(xué)科實(shí)驗(yàn)操作考試,有A、B、C、D四個(gè)實(shí)驗(yàn),規(guī)定每位學(xué)生只參加其中一個(gè)實(shí)驗(yàn)的考試,并由學(xué)生自己抽簽決定具體的考試實(shí)驗(yàn).小王,小張,小厲都參加了本次考試.
①小厲參加實(shí)驗(yàn)D考試的概率是 ;
②用列表或畫(huà)樹(shù)狀圖的方法求小王、小張抽到同一個(gè)實(shí)驗(yàn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)M,N同時(shí)從點(diǎn)B出發(fā),分別在BC,BA上運(yùn)動(dòng),若點(diǎn)M的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度,且是點(diǎn)N運(yùn)動(dòng)速度的2倍,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),停止一切運(yùn)動(dòng).以MN為對(duì)稱軸作△MNB的對(duì)稱圖形△MNB1.點(diǎn)B1恰好在AD上的時(shí)間為______秒.在整個(gè)運(yùn)動(dòng)過(guò)程中,△MNB1與矩形ABCD重疊部分面積的最大值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請(qǐng)判斷△ADE是什么三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當(dāng)點(diǎn)在線段BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
②當(dāng)點(diǎn)在直線BC上移動(dòng),則,之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點(diǎn)B的坐標(biāo)為(1,3),將矩形沿對(duì)角線AC翻折,B點(diǎn)落在D點(diǎn)的位置,且AD交y軸于點(diǎn)E.那么點(diǎn)D的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y = kx + b的圖象經(jīng)過(guò)點(diǎn)(1,-2)和(2,0).
(1)求這個(gè)一次函數(shù)的關(guān)系式:
(2)將該函數(shù)的圖象沿x軸向左平移3個(gè)單位后,求所得圖象對(duì)應(yīng)的函數(shù)表達(dá)式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com