分析 (1)利用菱形的性質(zhì)和等邊三角形的性質(zhì),根據(jù)SAS證明△ABE≌△ACF,即可求得BE=CF;
(2)根據(jù)△ABE≌△ACF可得S△ABE=S△ACF,根據(jù)S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC得出四邊形AECF的面積不會(huì)發(fā)生變化;再作AH⊥BC于點(diǎn)H.求出AH的值,根據(jù)S四邊形AECF=S△ABC=$\frac{1}{2}$BC•AH,代入計(jì)算即可求解.
解答 (1)證明:∵在菱形ABCD中,∠BAD=120°,
∴∠B=60°,∠BAC=$\frac{1}{2}$∠BAD=60°,
∴△ABC為等邊三角形,
∴AB=BC=AC.
∵△AEF為等邊三角形,
∴AE=AF,∠EAF=60°,
∴∠BAC-∠EAC=∠EAF-∠EAC,
即∠BAE=∠CAF,
∴△BAE≌△CAF,
∴BE=CF;
(2)解:四邊形AECF的面積不會(huì)發(fā)生變化.理由如下:
∵△BAE≌△CAF,
∴S△ABE=S△ACF,
∴S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,
∵△ABC的面積是定值,
∴四邊形AECF的面積不會(huì)發(fā)生變化.
如圖,作AH⊥BC于點(diǎn)H.
∵AB=AC=BC=4,
∴BH=$\frac{1}{2}$BC=2,
AH=AB•sin∠B=4×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴S四邊形AECF=S△ABC=$\frac{1}{2}$BC•AH=$\frac{1}{2}$×4×2$\sqrt{3}$=4$\sqrt{3}$.
點(diǎn)評 本題考查了菱形的性質(zhì)、全等三角形判定與性質(zhì)及三角形面積的計(jì)算,求證△ABE≌△ACF是解題的關(guān)鍵,難度適中.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a2-4a+5=a(a-4)+5 | B. | (x+2)(x+3)=x2+5x+6 | C. | a2-9b2=(a+3b)(a-3b) | D. | x+1=x(1+$\frac{1}{x}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | -$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | b2=(a+c)(a-c) | B. | a:b:c=1:2:$\sqrt{3}$ | C. | a=32,b=42,c=52 | D. | a=6,b=8,c=10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 16 | D. | 26 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com