【題目】△ABC中,AB=AC,在△ABC內(nèi)求作一點(diǎn)O,使點(diǎn)O到三邊的距離相等.甲同學(xué)的作法如圖1所示,乙同學(xué)的作法如圖2所示,對于兩人的作法,下列說法正確的是( 。
A.兩人都對B.兩人都不對C.甲對,乙不對D.乙對,甲不對
【答案】A
【解析】
根據(jù)等腰三角形的性質(zhì)得到的垂直平分線平分,根據(jù)角平分線的性質(zhì)可判斷甲同學(xué)的作法正確;同時(shí)也可判斷乙同學(xué)的作法正確.
甲同學(xué)作了∠ABC的平分線和底邊BC的垂直平分線,因?yàn)?/span>AB=AC,所以BC的垂直平分線平分∠BAC,則點(diǎn)O為△ABC內(nèi)角的平分線的交點(diǎn),所以點(diǎn)O到三邊的距離相等,所以甲同學(xué)的作法正確;
乙同學(xué)作了∠ABC和∠ACB的平分線,則點(diǎn)O到三邊的距離相等,所以乙同學(xué)的作法正確.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,是軸正半軸上一點(diǎn),,若與互為相反數(shù).
(1)求的值;
(2)如圖2,交軸于,以為邊的正方形的對角線交軸于.
①求證:;
②記,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是△ABC的邊AC上任意一點(diǎn),△ABC經(jīng)過平移后得到△A1B1C1,點(diǎn)P的對應(yīng)點(diǎn)為P1(a+6,b﹣2).
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).
(2)在上圖中畫出平移后三角形A1B1C1;
(3)畫出△AOA1并求出△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店以4元/千克的價(jià)格購進(jìn)一批水果,由于銷售狀況良好,該店又再次購進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進(jìn)水果重量的2倍,這樣該水果店兩次購進(jìn)水果共花去了2200元.
(1)該水果店兩次分別購買了多少元的水果?
(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購進(jìn)的水果有3%的損耗,第二次購進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)M是BE的中點(diǎn),連接CM、DM.
(1)當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時(shí)(如圖一),求證:DM=CM,DM⊥CM;
(2)當(dāng)點(diǎn)D在CA延長線上時(shí)(如圖二)(1)中結(jié)論仍然成立,請補(bǔ)全圖形(不用證明);
(3)當(dāng)ED∥AB時(shí)(如圖三),上述結(jié)論仍然成立,請加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD的面積為300cm2,長和寬的比為3:2.在此長方形內(nèi)沿著邊的方向能否并排裁出兩個(gè)面積均為147cm2的圓(π取3),請通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB和CD與直線MN相交.
(1)如圖①,EG平分∠BEF,FH平分∠DFE(平分的是一對同旁內(nèi)角),則∠1與∠2滿足________時(shí),AB∥CD;
(2)如圖②,EG平分∠MEB,FH平分∠DFE(平分的是一對同位角),則∠1與∠2滿足________時(shí),AB∥CD;
(3)如圖③,EG平分∠AEF,FH平分∠DFE(平分的是一對內(nèi)錯(cuò)角),則∠1與∠2滿足什么條件時(shí),AB∥CD?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com