【題目】如圖,內接于⊙,的延長線于點

1)求證:是⊙的切線;

2)若

①求的度數(shù);

②求的長.

【答案】1)詳見解析;(2)①;②

【解析】

1)由,得到∠O=90°,由得到∠ODB=O,根據(jù)切線的判定定理得到結論;
2)①先求出∠CBD和∠ACB的度數(shù),即可求出的度數(shù);

②如圖,過點C分別作CFAB,CEBD, 先求出CDAC的長,再求的長即可.

解:(1)證明:∵∠BAC45°

∴∠BOC2BAC90°,

BDOC,

∴∠BOC+OBD180°,

∴∠OBD90°,

BD是⊙O的切線;

2)①∵OC=OB,O90°,

∴∠OBC=∠OCB45°,

∵∠OBD90°,

∴∠CBD45°,

,

∴∠ABC60°

在△ABC中,,ABC60°

∴∠ACB75°

∴∠D=ACB-CBD=75°-45°=30°;

②如圖,過點C分別作CFAB于點F,CEBD于點E,

∵∠OBC45°, ,

CE=BC·sinCBE=2,

∵∠D30°,

CD=2CE=4,

在△FBC中,∠FBC60°, ,

CF=BC·sinCBF=,

在△ACF中,∠A45°,

AC==,

AD=AC+CD=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解我縣中學生參加“新冠肺炎知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,根據(jù)成績分成如下四個組:A60x70B70x80,C80x90,D90x100,并制作出如下的扇形統(tǒng)計圖和直方圖.請根據(jù)圖表信息解答下列問題:

1)扇形統(tǒng)計圖中的m   ,并在圖中補全頻數(shù)分布直方圖;

2)小明的成績是所有被抽查學生成績的中位數(shù) ,據(jù)此推斷他的成績在  組;

34個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A,C兩組學生的概率是多少?請列表或畫樹狀圖說明;

4)若我縣學生人數(shù)為18000人,請根據(jù)上述調查結果,估計我縣學生成績在CD兩組的共多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在中,,,點分別是的中點,過點作直線的垂線段垂足為.點是直線上一動點,作使,連接

1)觀察猜想:如圖(2),當點與點重合時,則的值為

2)問題探究:如圖(1),當點與點不重合時,請求出的值及兩直線夾角銳角的度數(shù),并說明理由

3)問題解決:如圖(3),當點在同一直線上時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平行四邊形ABCD中,ABBC=32.

(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點E,取線段BE的中點F,連接DFCE于點G.

(2),那么向量=______.(用向量、表示),并在圖中畫出向量在向量方向上的分向量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠生產的甲、乙兩種產品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多1500元.

1)求甲、乙商品的出廠單價分別是多少?

2)某銷售商計劃購進甲商品200件,購進乙商品的數(shù)量是甲的4倍.恰逢該廠正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該銷售商購進甲的數(shù)量比原計劃增加了,乙的出廠單價沒有改變,該銷售商購進乙的數(shù)量比原計劃少了.結果該銷售商付出的總貨款與原計劃的總貨款恰好相同,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】武漢某超市在疫情前用3000元購進某種干果銷售,發(fā)生疫情后,為了保障附近居民的生活需求,又調撥9000元購進該種干果.受疫情影響,交通等成本上漲,第二次的進價比第一次進價提高了20%,但是第二次購進干果的數(shù)量是第一次的2倍還多300千克,如果超市先按每千克9元的價格出售,當大部分干果售出后,最后的600千克按原售價的7折售完.售賣結束后,超市決定將盈利的資金捐助給武漢市用于抗擊新冠肺炎疫情.那么該超市可以捐助___________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形中,,繞點順時針旋轉,它的兩邊分別交(或它們的延長線)于點

繞點旋轉到時(如圖1),易證

1)當繞點旋轉到時(如圖2),線段之間有怎樣的數(shù)量關系?寫出猜想,并加以證明.

2)當繞點旋轉到如圖3的位置時,線段之間又有怎樣的數(shù)量關系?請直接寫出你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程kx22k+1x+k10有兩個不相等的實數(shù)根x1,x2

1)求k的取值范圍;

2)是否存在實數(shù)k,使1成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某班學生每天使用零花錢的情況,小明隨機調查了15名同學,結果如表:

每天使用零花錢(單位:元)

0

2

3

4

5

人數(shù)

1

4

5

3

2

關于這15名同學每天使用零花錢的情況,下列說法正確的是( 。

A.中位數(shù)是3B.眾數(shù)是5

C.平均數(shù)是2.5D.方差是4

查看答案和解析>>

同步練習冊答案