【題目】重慶朝天門碼頭位于置慶市油中半島的嘉陵江與長江交匯處,是重慶最古老的碼頭.如圖,小王在碼頭某點(diǎn)E處測(cè)得朝天門廣場(chǎng)上的某高樓AB的頂端A的仰角為45°,接著他沿著坡度為1:2.4的斜坡EC走了26米到達(dá)坡頂C處,到C處后繼續(xù)朝高樓AB的方向前行16米到D處,在D處測(cè)得A的仰角為74°,則此時(shí)小王距高樓的距離BD的為( 。┟祝ńY(jié)果精確到1米,參考數(shù)據(jù):sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
A.12B.13C.15D.16
【答案】A
【解析】
過E作EH⊥AB交AB的延長線于H,過C作CG⊥EH于G,則CG=BH,BC=GH,解直角三角形即可得到結(jié)論.
過E作EH⊥AB交AB的延長線于H,過C作CG⊥EH于G,
則CG=BH,BC=GH,
∵CE=26,=1:2.4,
∴CG=10,EG=24,
∴BH=CG=10,
設(shè)BD=x,
在Rt△ABD中,∵∠ADB=74°,
∴AB=tan74°x=3.49x,
∴AH=AB+BH=3.49x+10,
∵EH=EG+GH=24+16+x,
∵∠AEH=45°,
∴AH=EH,
∴3.49x+10=24+16+x,
解得:x≈12,
∴BD=12,
答:小王距高樓的距離BD為12米.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余活動(dòng)情況,對(duì)喜愛看課外書、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方式收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中--項(xiàng)),并據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問題:
(1) ,直接補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生名,試估計(jì)該校喜愛看課外書的學(xué)生人數(shù);
(3)若被調(diào)查喜愛體育活動(dòng)的名學(xué)生中有名男生和名女生,現(xiàn)從這名學(xué)生中任意抽取名,請(qǐng)用列表或畫樹狀圖的方法求恰好抽到名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)θ(0°≤θ≤360°),得到矩形AEFG.
(1)當(dāng)點(diǎn)E在BD上時(shí),求證:AF∥BD;
(2)當(dāng)GC=GB時(shí),求θ;
(3)當(dāng)AB=10,BG=BC=13時(shí),求點(diǎn)G到直線CD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要改造部分農(nóng)田種植蔬菜.經(jīng)調(diào)查,平均每畝改造費(fèi)用是元,添加滴灌設(shè)備等費(fèi)用(元)與改造面積(畝)的平分成正比,比例系數(shù)為,以上兩項(xiàng)費(fèi)用年內(nèi)不需要增加;每畝種植蔬菜還需種子、人工費(fèi)用元,這項(xiàng)費(fèi)用每年均需開支.設(shè)改造畝,每畝蔬菜年均銷售金額為元,除上述費(fèi)用外,沒有其他費(fèi)用.
(1)設(shè)當(dāng)年收益為元,求與的函數(shù)關(guān)系式(用含的式子表示);
(2)若,如果按年計(jì)算,是否改造面積越大收益越大?改造面積為多少時(shí)可以得到最大收益?
(3)若時(shí),按年計(jì)算,能確保改造的面積越大收益也越大,求的取值范圍.
注:收益=銷售金額-(改造費(fèi)+滴灌設(shè)備等費(fèi)+種子、人工費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,交直線于.發(fā)現(xiàn): .
探究①:若恰好是的中點(diǎn),交于,如圖2,求的長;
探究②:在旋轉(zhuǎn)過程中,當(dāng)是等腰三角形時(shí),求點(diǎn)所旋轉(zhuǎn)的路徑長(保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題呈現(xiàn):我們知道反比例函數(shù)y=(x>0)的圖象是雙曲線,那么函數(shù)y=+n(k、m、n為常數(shù)且k≠0)的圖象還是雙曲線嗎?它與反比例函數(shù)y=(x>0)的圖象有怎樣的關(guān)系呢?讓我們一起開啟探索之旅……
探索思考:我們可以借鑒以前研究函數(shù)的方法,首先探索函數(shù)y=的圖象.
(1)填寫下表,并畫出函數(shù)y=的圖象.
①列表:
x | … | ﹣5 | ﹣3 | ﹣2 | 0 | 1 | 3 | … |
y | … | … |
②描點(diǎn)并連線.
(2)觀察圖象,寫出該函數(shù)圖象的兩條不同類型的特征:
① ② ;
理解運(yùn)用:函數(shù)y=的圖象是由函數(shù)y=的圖象向 平移 個(gè)單位,其對(duì)稱中心的坐標(biāo)為 .
靈活應(yīng)用:根據(jù)上述畫函數(shù)圖象的經(jīng)驗(yàn),想一想函數(shù)y=+2的圖象大致位置,并根據(jù)圖象指出,當(dāng)x滿足 時(shí),y≥3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場(chǎng)根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過市場(chǎng)銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).
(1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊的邊長是,以邊上的高,為邊作等邊三角形,得到第一個(gè)等邊;再以等邊的邊上的高,為邊作等邊三角形,得到第二個(gè)等邊,再以等邊的邊上的高為邊作等邊三角形,得到第三個(gè)等邊: ....記的面積為的面積為的面積為,如此下去,則 ___________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com