已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于點C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,
由于x1<x2,則有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).
拋物線的解析式為:y=a(x+5)(x﹣1)(a>0),
∴對稱軸為直線x=2,頂點D的坐標為(﹣2,﹣9a),
令x=0,得y=﹣5a,
∴C點的坐標為(0,﹣5a).
依題意畫出圖形,如右圖所示,則OA=5,OB=1,AB=6,OC=5a,
過點D作DE⊥y軸于點E,則DE=2,OE=9a,CE=OE﹣OC=4a.
S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC
=(DE+OA)•OE﹣DE•CE﹣OA•OC
=(2+5)•9a﹣×2×4a﹣×5×5a
=15a,
而S△ABC=AB•OC=×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1; ……3分
(2)如解答圖所示,
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
設對稱軸x=2與x軸交于點F,則AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.
∵∠ADC=90°,∴△ACD為直角三角形,
由勾股定理得:AD2+CD2=AC2,
即(9+81a2)+(4+16a2)=25+25a2,化簡得:a2=,
∵a>0,
∴a=,
∴拋物線的解析式為:y=(x+5)(x﹣1)=x2+x﹣.
科目:初中數(shù)學 來源: 題型:
在矩形ABCD中,AB = 10,BC = 12,E為DC的中點,
連接BE,作AF⊥BE,垂足為F.
(1)求證:△BEC∽△ABF;
(2)求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,科技小組準備用材料圍建一個面積為60m2的矩形科技園ABCD,
其中一邊AB靠墻,墻長為12m,設AD的長為m,DC的長為m.
(1)求與之間的函數(shù)關系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和
DC的長都是整米數(shù),求出滿足條件的所有圍建方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,AB、CD是⊙O的兩條弦,連結AD、BC.若∠BCD=70°,則∠BAD的度數(shù)為
A.40° | B.50° | C.60° | D.70° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
一只不透明的袋子中裝有2個白球和一個紅球,這些球除顏色外其余都相同,攪勻后從中任意摸出一個球,記錄下顏色后放回袋中并攪勻,再從中任意摸出一個球,請用樹狀圖或列表的方法列出所有可能的結果,求出兩次摸出的球顏色相同的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com