分析 (1)利用圓周角定理得到∠ADE=90°,則∠F+∠FED=90°,于是根據(jù)∠F=∠AED得到∠AEF=90°,然后根據(jù)切線(xiàn)的判定定理可得EF是⊙O切線(xiàn);
(2)先證明△DCE∽△DEF,則利用相似比可計(jì)算出DE=6$\sqrt{2}$,再判斷△AEC為等腰三角形得到EA=EC,AD=CD=6,接著根據(jù)勾股定理得到AE=6$\sqrt{3}$,然后利用面積法計(jì)算出AB=4$\sqrt{6}$,最后利用勾股定理計(jì)算BE的長(zhǎng).
解答 (1)證明:∵AB為直徑,
∴∠ADE=90°,
∴∠F+∠FED=90°,
∵∠F=∠AED,
∴∠AED+∠FED=90°,即∠AEF=90°,
∴AE⊥EF,
∴EF是⊙O切線(xiàn);
(2)解:∵∠CED=∠F,∠CDE=∠EDF,
∴△DCE∽△DEF,
∴$\frac{DC}{DE}$=$\frac{DE}{DF}$,即$\frac{6}{DE}$=$\frac{DE}{12}$,解得DE=6$\sqrt{2}$,
∵ED⊥AD,∠AED=∠CED,
∴△AEC為等腰三角形,
∴EA=EC,AD=CD=6,
在Rt△ADE中,AE=$\sqrt{A{D}^{2}+D{E}^{2}}$=$\sqrt{{6}^{2}+(6\sqrt{2})^{2}}$=6$\sqrt{3}$,
∴EC=6$\sqrt{3}$,
∵$\frac{1}{2}$CE•AB=$\frac{1}{2}$DE•AC,
∴AB=$\frac{6\sqrt{2}×12}{6\sqrt{3}}$=4$\sqrt{6}$,
在Rt△ABE中,BE=$\sqrt{A{E}^{2}-A{B}^{2}}$=$\sqrt{(6\sqrt{3})^{2}-(4\sqrt{6})^{2}}$=2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線(xiàn)的判定:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).當(dāng)已知條件中明確指出直線(xiàn)與圓有公共點(diǎn)時(shí),常連接過(guò)該公共點(diǎn)的半徑,證明該半徑垂直于這條直線(xiàn).熟練應(yīng)用勾股定理和相似比計(jì)算線(xiàn)段的長(zhǎng)是解決(2)小題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -12 | C. | 12 | D. | 12或-12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com