A. | $2-\frac{1}{2^4}$ | B. | $\frac{1}{2^4}$ | C. | $1-\frac{1}{2^5}$ | D. | $\frac{1}{2^5}$ |
分析 根據(jù)中點的性質(zhì)及折疊的性質(zhì)可得DA=DA'=DB,從而可得∠ADA'=2∠B,結(jié)合折疊的性質(zhì),∠ADA'=2∠ADE,可得∠ADE=∠B,繼而判斷DE∥BC,得出DE是△ABC的中位線,證得AA1⊥BC,得到AA1=2,求出h1=2-1=1,同理h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是經(jīng)過第5次操作后得到的折痕D4E4到BC的距離h5=2-$\frac{1}{{2}^{4}}$.
解答 解:連接AA1,
由折疊的性質(zhì)可得:AA1⊥DE,DA=DA1,
又∵D是AB中點,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2-1=1,
同理,h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是經(jīng)過第5次操作后得到的折痕D4E4到BC的距離h5=2-$\frac{1}{{2}^{4}}$,
故選A.
點評 本題考查了相似三角形的判定和性質(zhì),三角形中位線的性質(zhì),平行線等分線段定理,找出規(guī)律是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{2}$-4 | B. | 3$\sqrt{2}$-3 | C. | 3$\sqrt{2}$-2 | D. | 3$\sqrt{2}$-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | SSS | B. | ASA | C. | SAS | D. | AAS |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com