分析 (1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋轉(zhuǎn)的性質(zhì)可得到∠BAD=∠CAE,通過(guò)等量代換,即可證得所求的兩條線段所在直線的內(nèi)錯(cuò)角相等,由此得證.
(2)由旋轉(zhuǎn)的性質(zhì)易知:AD=AE=BD,且已證得AE∥BD,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,即可判定四邊形ABDE是平行四邊形.
解答 (1)證明:由旋轉(zhuǎn)性質(zhì)得∠BAD=∠CAE,
∵AD=BD,
∴∠B=∠BAD,
∵AB=AC,
∴∠B=∠DCA;
∴∠CAE=∠DCA,
∴AE∥BC.
(2)解:四邊形ABDE是平行四邊形,
理由如下:
由旋轉(zhuǎn)性質(zhì)得AD=AE,
∵AD=BD,
∴AE=BD,
又∵AE∥BC,
∴四邊形ABDE是平行四邊形.
點(diǎn)評(píng) 此題主要考查了旋轉(zhuǎn)的性質(zhì)以及平行四邊形的判定和性質(zhì),難度不大,熟記平行四邊形的各種性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2a3(-a2)=-2a5 | B. | (a-b)2=a2-b2 | C. | (-a)5÷(-a)2=a3 | D. | (-3)-1=3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 對(duì)角相等 | B. | 對(duì)角線互相平分 | C. | 對(duì)角線相等 | D. | 對(duì)邊相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com