【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、F,連接BD交OF于點E.
(1)求證:OF⊥BD;
(2)若AB=,DF=,求AD的長.
【答案】(1)見解析;(2)
【解析】
(1)連接AF.根據直徑所對的圓周角是直角、等腰三角形的性質以及平行線的性質即可證明;
(2)設AD=x.根據圓周角定理的推論和勾股定理進行求解.
解:(1)證明:連接AF,如圖所示:
∵AB是⊙O的直徑,
∴∠AFB=∠ADB=90°,
∵AB=AC,
∴FC=FB.
∵OA=OB,
∴OD∥AC.
∴∠OEB=∠ADB=90°,
∴OF⊥BD.
(2)設AD=x,
∵OF⊥BD,
∴可得OF是BD的中垂線,
∴FD=FB,
∴∠1=∠2,
∴BF=DF=,
∵OF⊥DB,
∴ED=EB.
∴OE=AD=,FE=OF﹣OE=,
在Rt△FEB中,BE2=EB2﹣FE2=;
在Rt△OFB中,BE2=OB2﹣OE2=;
∴=
解得:x=,
即AD=.
科目:初中數學 來源: 題型:
【題目】對于氣溫,有的地方用攝氏溫度表示,有的地方用華氏溫度表示,攝氏溫度與華氏溫度之間是一次函數關系.如圖所示是一個家用溫度表的表盤、其左邊為攝氏溫度的刻度和讀數(單位),右邊為華氏溫度的刻度和讀數(單位).從溫度計的刻度上可以看出,攝氏溫度與華氏溫度部分對應關系如下表:
··· | ··· | |||
··· | ··· |
(1)求與之間的函數關系式;
(2)當攝氏溫度為零下時,求華氏溫度為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,直徑AC與弦BD的交點為E,OB∥CD,BH⊥AC,垂足為H,且∠BFA=∠DBC.
(1)求證:BF是⊙O的切線;
(2)若BH=3,求AD的長度;
(3)若sin∠DAC=,求△OBH的面積與四邊形OBCD的面積之比.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,E、F、G、H分別是AB、BC、CD、DA上的點,且AE=BF=CG=DH.設A、E兩點間的距離為x,四邊形EFGH的面積為y,則y與x的函數圖象可能是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數會落在 等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“一帶一路”倡議提出五年多來,交通、通信、能源等各項相關建設取得積極進展,也為增進各國民眾福祉提供了新的發(fā)展機遇.下圖是2017年“一年一路”沿線部分國家的通信設施現(xiàn)狀統(tǒng)計圖.
根據統(tǒng)計圖提供的信息,下列推斷合理的是( ).
A.互聯(lián)網服務器擁有個數最多的國家是阿聯(lián)酋
B.寬帶用戶普及率的中位數是11.05%
C.有8個國家的電話普及率能夠達到平均每人1部
D.只有俄羅斯的三項指標均超過了相應的中位數
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線與的一個交點記為,與的一個交點記為,點的橫坐標是,點在第一象限內.
(1)求點的坐標及的表達式;
(2)點是線段上的一個動點,過點作軸的垂線,垂足為,在的右側作正方形.
①當點的橫坐標為時,直線恰好經過正方形的頂點,求此時的值;
②在點的運動過程中,若直線與正方形始終沒有公共點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】反比例函數在第一象限的圖象如圖所示,過上任意一點,作軸垂線交于點,交軸于點,作軸垂線,交于點,交軸于點,直線分別交軸,軸于點,則__________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com