【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中, ①AE和BF的位置關系為;
②線段MN的最小值為 .
【答案】AE⊥BF;
【解析】解:①如圖,∵動點F,E的速度相同, ∴DF=CE,
又∵CD=BC,
∴CF=BE,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,
∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠APB=90°,
∴AE⊥BF,②∵點P在運動中保持∠APB=90°,
∴點P的路徑是一段以AB為直徑的弧,
設AB的中點為G,連接CG交弧于點P,此時CP的長度最小,
在Rt△BCG中,CG= = = ,
∵PG= AB= ,
∴CP=CG﹣PG= ﹣ = ,
即線段CP的最小值為 ,
所以答案是AE⊥BF, .
【考點精析】利用正方形的性質對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,直角三角板的直角頂點O在直線AB上,OC,OD是三角板的兩條直角邊,OE平分∠AOD.
(1)若∠COE=20°,則∠BOD= ;若∠COE=α,則∠BOD= (用含α的代數式表示)
(2)當三角板繞O逆時針旋轉到圖2的位置時,其它條件不變,試猜測∠COE與∠BOD之間有怎樣的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下(x>9且x<26,單位:km)
(1)說出這輛出租車每次行駛的方向.
(2)求經過連續(xù)4次行駛后,這輛出租車所在的位置.
(3)這輛出租車一共行駛了多少路程?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數軸上三點M,O,N對應的數分別為-1,0,3,點P為數軸上任意一點,其對應的數為x.
(1)MN的長為 ;
(2)如果點P到點M、點N的距離相等,那么x的值是 ;
(3)數軸上是否存在點P,使點P到點M、點N的距離之和是8?若存在,直接寫出x的值;若不存在,請說明理由.
(4)如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時點P到點M、點N的距離相等,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖示,三角形ABC是等邊三角形,D是BC邊上的一點,三角形ABD經過旋轉后到達三角形ACE的位置.
(1)旋轉中心是哪一點?
(2)旋轉了多少度?
(3)如果M是AB的中點,那么經過上述旋轉后,點M到了什么位置?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,先把梯形ABCD向左平移6個單位長度得到梯形A1B1C1D1.
(1)請你在平面直角坐標系中畫出梯形A1B1C1D1 ;
(2)以點C1為旋轉中心,把(1)中畫出的梯形繞點C1順時針方向旋轉 得到梯形A2B2C2D2 ,請你畫出梯形A2B2C2D2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1, O為正方形ABCD的中心,分別延長OA,OD到點F,E,使OF=2OA,OE=2OD,連接EF,將△FOE繞點O按逆時針方向旋轉角α得到△FOE,連接AE,BF(如圖2).
(1)探究AE與BF的數量關系,并給予證明;
(2)當α=30°時,求證: △AOE為直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1:y1=﹣x+m與y軸交于點A(0,6),直線l2:y=kx+1分別與x軸交于點B(﹣2,0),與y軸交于點C,兩條直線交點記為D.
(1)m= ,k= ;
(2)求兩直線交點D的坐標;
(3)根據圖象直接寫出y1<y2時自變量x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com