【題目】某小學(xué)為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進(jìn)行了統(tǒng)計(jì),得到每個(gè)年級的留守兒童人數(shù)分別為10,15,10,17,18,20.對于這組數(shù)據(jù),下列說法錯(cuò)誤的是(
A.平均數(shù)是15
B.眾數(shù)是10
C.中位數(shù)是17
D.方差是

【答案】C
【解析】解:平均數(shù)是:(10+15+10+17+18+20)÷6=15,A說法正確,不符合題意; 10出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是10,B說法正確,不符合題意;
把這組數(shù)據(jù)從小到大排列為10,10,15,17,18,20,
最中間的數(shù)是(15+17)÷2=16,則中位數(shù)是16,C說法錯(cuò)誤,符合題意;
方差是: [2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]= = ,D正確,不符合題意.
則下列說法錯(cuò)誤的是C.
故選:C.
根據(jù)方差、眾數(shù)、平均數(shù)和中位數(shù)的計(jì)算公式和定義分別進(jìn)行解答即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從3,0,﹣1,﹣2,﹣3這五個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù),作為函數(shù)y=(5﹣m2)x和關(guān)于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函數(shù)的圖象經(jīng)過第一、三象限,且方程有實(shí)數(shù)根的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時(shí),x對應(yīng)的函數(shù)值分別為y1、y2 , 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 下列判斷: ①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)三角形知識時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.

(1)如圖①,M為邊AC上一點(diǎn),則BD、MF的位置關(guān)系是 ;

如圖②,M為邊AC反向延長線上一點(diǎn),則BD、MF的位置關(guān)系是 ;

如圖③,M為邊AC延長線上一點(diǎn),則BD、MF的位置關(guān)系是

(2)請就圖①、圖②、或圖③中的一種情況,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個(gè)乙種足球比購買一個(gè)甲種足球多花20元;

(1)求購買一個(gè)甲種足球、一個(gè)乙種足球各需多少元;

(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個(gè).恰逢該商場對兩種足球的售價(jià)進(jìn)行調(diào)整,甲種足球售價(jià)比第一次購買時(shí)提高了10%,乙種足球售價(jià)比第一次購買時(shí)降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個(gè)乙種足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠ABC=∠ADC,BF、DE分別平分∠ABC與∠ADC.∠1=∠3,求證:ABDC

證明:∵∠ABC=∠ADC ( )

( )

BF、DE分別平分∠ABC與∠ADC ( )

( )

∴∠______=∠______ ( )

∵∠1=∠3( )

∴∠2=∠______ (等量代換)

________ ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC=5,BC=6(如圖所示),將△ABC沿射線BC方向平移m個(gè)單位得到△DEF,頂點(diǎn)A、B、C分別與D、E、F對應(yīng).若以點(diǎn)A、D、E為頂點(diǎn)的三角形是等腰三角形,且AE為腰,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個(gè)長方形沿著對角線剪開即可得到兩個(gè)全等的三角形,再把△ABC沿著AC方向平移,得到圖中的△GBH,BGAC于點(diǎn)E,GHCD于點(diǎn)F.在圖中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PAOB的角平分線OC上一點(diǎn),分別連接AP、BP,若再添加一個(gè)條件即可判定AOP≌△BPO,則一下條件中:A=BAPO=BPOAPC=BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號即可)

查看答案和解析>>

同步練習(xí)冊答案