【題目】已知點A(3,﹣6)是二次函數(shù)y=ax2上的一點,則這二次函數(shù)的解析式是

【答案】y=﹣x2

【解析】

試題分析:將點A(3,﹣6)代入y=ax2,利用待定系數(shù)法法求該二次函數(shù)的解析式即可﹣6=9a,

解得a=﹣;因此該二次函數(shù)的解析式為:y=﹣x2

考點:待定系數(shù)法求二次函數(shù)解析式

型】填空
束】
15

【題目】在一個不透明的口袋中裝有8個紅球和若干個白球,它們除顏色外其它完全相同,通過多次摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在40%附近,則口袋中白球可能有________

【答案】12

【解析】試題解析:設口袋中白球可能有x,

∵摸到紅球的頻率穩(wěn)定在40%附近,

∴口袋中摸到紅色球的概率為40%,

=40%,

解得:x=12,

故答案為12

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把兩個邊長相等的等邊ABCACD拼成菱形ABCD,點E、F分別是射線CBDC上的動點(E、FB、CD不重合),且始終保持BE=CF,連結AE、AFEF

1)求證:①△ABE≌△ACF;②△AEF是等邊三角形;

2①當點E運動到什么位置時,EFDC?

②若AB=4,當∠EAB=15°時,求CEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:

(1)當有n張桌子時,兩種擺放方式各能坐多少人?

(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,張三打算在院落種上蔬菜.已知院落為東西長為32米,南北寬為20米的長方形,為了行走方便,要修筑同樣寬度的三條小路,東西兩條,南北一條,余下的部分種上各類蔬菜.若每條小路的寬均為1米.

1)求蔬菜的種植面積;

2)若每平方米的每季蔬菜的值為3元,成本為1元,這個院落每季的產值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C在⊙O上,若∠BAC=45°,OB=2,則圖中陰影部分的面積為( )

A. π-4 B. π-1 C. π-2 D. -2

【答案】C

【解析】試題解析:∵∠BAC=45°,

∴∠BOC=90°,

∴△OBC是等腰直角三角形,

OB=2,

∴△OBCBC邊上的高為:OB=,

BC=2

S陰影=S扇形OBC﹣SOBC=.

故選C.

型】單選題
束】
10

【題目】夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為(  )

A.8m B.6.4m C.4.8m D.10m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知點A、B是反比例函數(shù)y=﹣上在第二象限內的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

【答案】

【解析】過點AADy軸于點D,過點BBEy軸于點E,過點AAFBE軸于點F如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBEBCE=CAD

ACDCBE中,由,

ACDCBE(ASA).

設點B的坐標為(m,﹣)(m<0),則E(0,﹣),點D(0,3﹣m),點A(﹣﹣3,3﹣m),

∵點A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,

,解得:m=3,m=2(舍去).

∴點A的坐標為(﹣1,6),B的坐標為(﹣3,2),F的坐標為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

點睛

過點AADy軸于點D,過點BBEy軸于點E,過點AAFBE軸于點F,根據角的計算得出ACD=CBEBCE=CAD,由此證出ACDCBE;再設點B的坐標為(m,﹣),由三角形全等找出點A的坐標,將點A的坐標代入到反比例函數(shù)解析式中求出m的值,將m的值代入A,B點坐標即可得出點AB的坐標,并結合點AB的坐標求出點F的坐標,利用勾股定理即可得出結論.

型】填空
束】
18

【題目】二次函數(shù)y=x2+2m+1x+m2﹣1)有最小值﹣2,則m=________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M,N為山兩側的兩個村莊,為了兩村交通方便,根據國家的惠民政策,政府決定打一直線涵洞,工程人員為計算工程量,必須測量M、N兩點之間的直線距離.選擇測量點A、BC,點BC分別在AM、AN上,現(xiàn)測得AM1千米,AN1.8千米,AB54米,BC45米,AC30米,求M、N兩點之間的直線距離.

【答案】M、N兩點之間的直線距離為1500米.

【解析】試題分析:先根據相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可.

試題解析:在ABCAMN中, =,,又∵∠A=A,

∴△ABC∽△AMN,即,

解得:MN=1500米,

答:M、N兩點之間的直線距離是1500米;

考點:相似三角形的應用.

型】解答
束】
23

【題目】如圖,在ADC中,點B是邊DC上的一點,∠DAB=C .若ADC的面積為18cm,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E、F分別是邊AD,BC的中點.張老師請同學們將紙條的下半部分即平行四邊形ABFE沿EF翻折,得到一個V字形圖案.

(1)請你在原圖中畫出翻折后的圖形平行四邊形A′B′FE(用尺規(guī)作圖,不寫畫法,保留作圖痕跡)

(2)已知∠A=63°,求∠B′FC的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方成同學看到一則材料:甲開汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設乙行駛的時間為th),甲乙兩人之間的距離為ykm),yt的函數(shù)關系如圖1所示.

方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時與乙相遇.

請你幫助方成同學解決以下問題:

1)分別求出線段BC,CD所在直線的函數(shù)表達式;

2)當20y30時,求t的取值范圍;

3)分別求出甲,乙行駛的路程S,S與時間t的函數(shù)表達式,并在圖2所給的直角坐標系中分別畫出它們的圖象;

4丙騎摩托車與乙同時出發(fā),從N地沿同一公路勻速前往M地,若丙經過h與乙相遇,問丙出發(fā)后多少時間與甲相遇?

查看答案和解析>>

同步練習冊答案