【題目】如圖1所示,已知BCOA, B=∠A=120°.

1)證明:OBAC;

2)如圖2所示,若點(diǎn)E,FBC上,且∠FOC=AOC,OE平分∠BOF,求∠EOC的度數(shù).

3)在(2)的條件下,若左右平移AC,如圖3所示,那么∠OCB∶∠OFB的比值是否隨之發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)求出這個(gè)比值.

4)在(2)和(3)的條件下,當(dāng)∠OEB=OCA時(shí),求∠OCA的度數(shù).

【答案】(1) 答案見(jiàn)詳解,(2) 答案見(jiàn)詳解,(3) 答案見(jiàn)詳解,(4) 答案見(jiàn)詳解.

【解析】

1)由同旁內(nèi)角互補(bǔ),兩直線平行證明.

2)由∠FOC=AOC,并且OE平分∠BOF得到∠EOC=EOF+FOC=(∠BOF+FOA=BOA,算出結(jié)果.

3)先得出結(jié)論:∠OCB:∠OFB的值不發(fā)生變化,理由為:由BCAO平行,得到一對(duì)內(nèi)錯(cuò)角相等,由∠FOC=AOC,等量代換得到一對(duì)角相等,再利用外角性質(zhì)等量代換即可得證;

4)設(shè)∠BOE=EOF=α,∠FOC=COA=β,根據(jù)外角的性質(zhì)分別用αβ表示出∠OEB和∠OCA,由∠OEB=OCA,即可得出α=β=15°,求出∠OCA即可.

1)∵BCOA,
∴∠B+O=180°,又∵∠B=A,
∴∠A+O=180°,
OBAC;
2)∵∠B+BOA=180°,∠B=120°,
∴∠BOA=60°
OE平分∠BOF,
∴∠BOE=EOF,又∵∠FOC=AOC,
∴∠EOC=EOF+FOC=(∠BOF+FOA

=BOA=30°;
3)結(jié)論:∠OCB:∠OFB的值不發(fā)生變化.理由為:
BCOA,
∴∠FCO=COA
又∵∠FOC=AOC,
∴∠FOC=FCO,
∴∠OFB=FOC+FCO=2OCB
∴∠OCB:∠OFB=12;
4)由(1)知:OBAC,
則∠OCA=BOC,
由(2)可以設(shè):∠BOE=EOF=α,∠FOC=COA=β,
則∠OCA=BOC=2α+β
OEB=EOC+ECO=α+β+β=α+2β,
∵∠OEB=OCA
2α+β=α+2β,
α=β
∵∠AOB=60°,
α=β=15°
∴∠OCA=2α+β=30°+15°=45°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E,F(xiàn),與雙曲線y=﹣
(x<0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn).

(1)求直線l的解析式;
(2)若直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),
①當(dāng)a為何值時(shí),△ABP是以點(diǎn)P為直角頂點(diǎn)的直角三角形?
②當(dāng)a為何值時(shí),PA=PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為表彰在美術(shù)展覽活動(dòng)中獲獎(jiǎng)的同學(xué),老師決定購(gòu)買(mǎi)一些水筆和顏料盒作為獎(jiǎng)品,請(qǐng)你根據(jù)圖中所給的信息,解答下列問(wèn)題;
(1)求出每個(gè)顏料盒,每支水筆各多少元?
(2)若學(xué)校計(jì)劃購(gòu)買(mǎi)顏料盒和水筆共20個(gè),所用費(fèi)用不超過(guò)340元,則顏料盒至多購(gòu)買(mǎi)多少個(gè)?
(3)恰逢商店舉行優(yōu)惠促銷(xiāo)活動(dòng),具體辦法如下:顏料盒按七折優(yōu)惠,水筆10支以上超出部分按八折優(yōu)惠,若學(xué)校決定購(gòu)買(mǎi)同種數(shù)量的同一獎(jiǎng)品,并且該獎(jiǎng)品的數(shù)量超過(guò)10件,請(qǐng)你幫助分析,購(gòu)買(mǎi)顏料盒合算還是購(gòu)買(mǎi)水筆合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;
(2)過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,BC=6, .求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你會(huì)求(a1)(a2012+a2011+a2010++a2+a+1)的值嗎?這個(gè)問(wèn)題看上去很復(fù)雜,我們可以先考慮簡(jiǎn)單的情況,通過(guò)計(jì)算,探索規(guī)律:

,

,

1)由上面的規(guī)律我們可以大膽猜想,得到(a1)(a2014+a2013+a2012++a2+a+1)=   

利用上面的結(jié)論,求:

222014+22013+22012++22+2+1的值是   

3)求52014+52013+52012++52+5+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校開(kāi)展了“圖書(shū)節(jié)”活動(dòng),為了解開(kāi)展情況,從七年級(jí)隨機(jī)抽取了150名學(xué)生對(duì)他們每天閱讀時(shí)間和閱讀方式(要求每位學(xué)生只能選一種閱讀方式)進(jìn)行了問(wèn)卷調(diào)查,并繪制了如下不完全的統(tǒng)計(jì)圖

根據(jù)上述統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)學(xué)生每天閱讀時(shí)間人數(shù)最多的是______段,閱讀時(shí)間在段的扇形的圓心角度數(shù)是______;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若將寫(xiě)讀后感、筆記積累、畫(huà)圓點(diǎn)讀三種方式為有記憶閱讀,求筆記積累人數(shù)占有記憶閱讀人數(shù)的百分比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90,BAC的平分線交BCD,過(guò)點(diǎn)CCGABG,交ADE,過(guò)點(diǎn)DDFABF.下列結(jié)論①∠CED= ;③∠ADF= ;CE=DF.正確的是

A. ①②④ B. ②③④ C. ①③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=41,AC=15,AH=9,ABC的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D是△ABC的邊BC的中點(diǎn),直線AEBC,過(guò)點(diǎn)D作直線DEAB,分別交AE、AC于點(diǎn)EF。

(1)求證:四邊形ADCE是平行四邊形;

(2)如果四邊形ADCE是矩形,△ABC應(yīng)滿足什么條件?并說(shuō)明理由;

(3)如果四邊形ADCE是菱形,直接寫(xiě)出△ABC應(yīng)滿足的條件是 。

查看答案和解析>>

同步練習(xí)冊(cè)答案