【題目】甲、乙兩人先后從公園大門出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達(dá).圖1是他們行走的路程y(m)與甲出發(fā)的時(shí)間x(min)之間的函數(shù)圖象.
(1)求線段AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)寫出點(diǎn)B的坐標(biāo)和它的實(shí)際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫出d與x之間的函數(shù)圖象(標(biāo)注必要數(shù)據(jù)).
【答案】(1)y=100x﹣600;(2)點(diǎn)B的坐標(biāo)為(15,900),它的實(shí)際意義是當(dāng)甲出發(fā)15分鐘后被乙追上,此時(shí)他們距出發(fā)點(diǎn)900米;(3)d=60x;d=﹣40x+600;d=40x﹣600;d=1500﹣60x.
【解析】
(1)根據(jù)圖1中的數(shù)據(jù)可以得出線段AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)直線OD的解析式為y=mx,將D(25,1500)代入,求出m的值,再聯(lián)立一次函數(shù)y=100x﹣600,即可求出B的坐標(biāo);
(3)分情況討論x的求值范圍并求出相對(duì)應(yīng)的函數(shù)關(guān)系式.
解:(1)設(shè)線段AC對(duì)應(yīng)的函數(shù)表達(dá)式為y=kx+b(k≠0).
將A(6,0)、C(21,1500)代入,
得,解得,
所以線段AC對(duì)應(yīng)的函數(shù)表達(dá)式為y=100x﹣600;
(2)設(shè)直線OD的解析式為y=mx,
將D(25,1500)代入,
得25m=1500,解得m=60,
∴直線OD的解析式為y=60x.
由,解得,
∴點(diǎn)B的坐標(biāo)為(15,900),它的實(shí)際意義是當(dāng)甲出發(fā)15分鐘后被乙追上,此時(shí)他們距出發(fā)點(diǎn)900米;
(3)①當(dāng)0≤x≤6時(shí),d=60x;
②當(dāng)6<x≤15時(shí),d=60x﹣(100x﹣600)=﹣40x+600;
③當(dāng)15<x≤21時(shí),d=100x﹣600﹣60x=40x﹣600;
④當(dāng)21<x≤25時(shí),d=1500﹣60x.
d與x之間的函數(shù)圖象如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】航拍無(wú)人機(jī)甲從海拔處出發(fā),以勻速鉛直上升,與此同時(shí),航拍無(wú)人機(jī)乙從海拔處出發(fā),以勻速鉛直上升.設(shè)無(wú)人機(jī)上升時(shí)間為,無(wú)人機(jī)甲、乙所在位置的高度分別為、
(1)根據(jù)題意,填寫下表:
上升時(shí)間 | 5 | 10 | |
25 | |||
60 |
(2)請(qǐng)你分別寫出、與的關(guān)系式;
(3)在某時(shí)刻兩架無(wú)人機(jī)能否位于同一高度?若能,求無(wú)人機(jī)上升的時(shí)間和所在高度;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵單車”已成為很多市民出行的選擇,李華從學(xué)院路站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的, , , , 中的某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點(diǎn)與學(xué)院路距離為(單位:千米),乘坐地鐵的時(shí)間 (單位:分鐘)是關(guān)于的一次函數(shù),其關(guān)系如下表:
地鐵站 | |||||
(千米) | |||||
(分鐘) |
()求關(guān)于的函數(shù)表達(dá)式.
()李華騎單車的時(shí)間 (單位:分鐘)與的關(guān)系式為,求李華從學(xué)院路站回到家的最短總時(shí)間,并指出他在哪一站出地鐵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準(zhǔn)備利用一段墻( 墻長(zhǎng)18米)和55米長(zhǎng)的竹籬笆圍成三個(gè)相連且面積相等的長(zhǎng)方形雞、鴨、鵝各一個(gè).問(wèn):
(1)如果雞、鴨、鵝場(chǎng)總面積為150米2,那么有幾種圍法?
(2)如果需要圍成的養(yǎng)殖場(chǎng)的面積盡可能大,那么又應(yīng)怎樣圍,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,弦BD=BA,AC=13,BC=5,BE⊥DC交DC的延長(zhǎng)線于點(diǎn)E.
(1)求證:CB是∠ECA的角平分線;
(2)求DE的長(zhǎng);
(3)求證:BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備與汽車租憑公司簽訂租車合同,以每月用車路程xkm計(jì)算,甲汽車租憑公司每月收取的租賃費(fèi)為y1元,乙汽車租憑公司每月收取的租賃費(fèi)為y2元,若y1、y2與x之間的函數(shù)關(guān)系如圖3所示,其中x=0對(duì)應(yīng)的函數(shù)值為月固定租賃費(fèi),則下列判斷錯(cuò)誤的是( )
A. 當(dāng)月用車路程為2000km時(shí),兩家汽車租賃公司租賃費(fèi)用相同
B. 當(dāng)月用車路程為2300km時(shí),租賃乙汽車租賃公車比較合算
C. 除去月固定租賃費(fèi),甲租賃公司每公里收取的費(fèi)用比乙租賃公司多
D. 甲租賃公司平均每公里收到的費(fèi)用比乙租賃公司少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一棵樹(shù)高h(yuǎn)(m)與生長(zhǎng)時(shí)間n(年)之間有一定關(guān)系,請(qǐng)你根據(jù)下表中數(shù)據(jù),寫出h(m)與n(年)之間的關(guān)系式:_____.
n/年 | 2 | 4 | 6 | 8 | … |
h/m | 2.6 | 3.2 | 3.8 | 4.4 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開(kāi)往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時(shí)間單位:小時(shí)之間的函數(shù)關(guān)系.
線段OA與折線BCD中,______表示貨車離甲地的距離y與時(shí)間x之間的函數(shù)關(guān)系.
求線段CD的函數(shù)關(guān)系式;
貨車出發(fā)多長(zhǎng)時(shí)間兩車相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com