【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)畫出將△ABC繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°圖形.
(2)填空:以A、B、C為頂點(diǎn)的平行四邊形的第四個頂點(diǎn)D的坐標(biāo)為________.
【答案】(1)畫圖見解析;(2), 或.
【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°對應(yīng)點(diǎn)A′、B′、C′的位置,然后順次連接即可;
(2)根據(jù)平行四邊形的對邊平行且相等,分AB、BC、AC是對角線三種情況分別寫出即可.
試題解析:(1)如圖所示△DEF為所求;
(2)若AB是對角線,則點(diǎn)D(-7,3),
若BC是對角線,則點(diǎn)D(-5,-3),
若AC是對角線,則點(diǎn)D(3,3),
故答案為: 或或 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于數(shù)據(jù):80,88,85,85,83,83,84.下列說法中錯誤的有( )
A、這組數(shù)據(jù)的平均數(shù)是84;
B、這組數(shù)據(jù)的眾數(shù)是85;
C、這組數(shù)據(jù)的中位數(shù)是84;
D、這組數(shù)據(jù)的方差是36.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片ABCD按如圖方式折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落到C′處,折痕為EF.若AD=9AB=6,求折痕EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式變形不一定正確的是( ).
A.若 x=y,則 x-5=y-5B.若 x=y,則 ax=ay
C.若 x=y,則 3-2x=3-2yD.若 x=y,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
我們把表格中字母的和所得的多項(xiàng)式稱為"'特征多項(xiàng)式",例如:第1格的“特征多項(xiàng)式”為 4x+y,第 2 格的“特征多項(xiàng)式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項(xiàng)式”為 第 4 格的“待征多項(xiàng)式”為 , 第 n 格的“特征多項(xiàng)式”為 .
(2)若第 m 格的“特征多項(xiàng)式”與多項(xiàng)式-24x+2y-5 的和不含有 x 項(xiàng),求此“特征多項(xiàng)式”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點(diǎn),且∠EAF=45°,將△ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2)EF2=BE2+DF2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把y=ax+b(其中a、b是常數(shù),x、y是未知數(shù))這樣的方程稱為“雅系二元一次方程”.當(dāng)y=x時,“雅系二元一次方程y=ax+b”中x的值稱為“雅系二元一次方程”的“完美值”.例如:當(dāng)y=x時,“雅系二元一次方程”y=3x﹣4化為x=3x﹣4,其“完美值”為x=2.
(1)求“雅系二元一次方程”y=5x+6的“完美值”;
(2)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;
(3)“雅系二元一次方程”y=kx+1(k≠0,k是常數(shù))存在“完美值”嗎?若存在,請求出其“完美值”,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個動點(diǎn),連接DE, 交 AC于點(diǎn)F.
(1)如圖①,當(dāng)時,求的值;
(2)如圖②當(dāng)DE平分∠CDB時,求證:AF=OA;
(3)如圖③,當(dāng)點(diǎn)E是BC的中點(diǎn)時,過點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG=BG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把(a﹣b)2看成一個整體,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的結(jié)果是 ;
(2)已知a+b=5(a﹣b),代數(shù)式= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com