精英家教網 > 初中數學 > 題目詳情

【題目】某超市計劃購進甲、乙兩種型號的節(jié)能燈共1000只,這兩種節(jié)能燈的進價、售價如下表:

進價(元/只)

售價(元/只)

甲型

25

30

乙型

45

60

1)如果進貨款恰好為37000元,那么可以購進甲型節(jié)能燈多少只?

2)超市為慶祝元旦進行大促銷活動,決定對乙型節(jié)能燈進行打折銷售,要求全部售完后,乙型節(jié)能燈的利潤率為20%,請問乙型節(jié)能燈需打幾折?

【答案】(1)可以購進甲種節(jié)能燈只;(2)乙型節(jié)能燈需打折.

【解析】

(1)設甲種節(jié)能燈購進只,則乙種節(jié)能燈購進(只,根據甲型、乙型的進貨價格列出方程,再進行求解即可;

2)設乙型節(jié)能燈需打折,利用:售價-進價=利潤,進價利潤率=利潤,列出方程解方程即可求得.

(1)設甲種節(jié)能燈購進只,乙種節(jié)能燈購進(只,

依題意得,,

解得:,

答:可以購進甲種節(jié)能燈只;

2)設乙型節(jié)能燈需打折,

依題意得:,即:

解得:

答:乙型節(jié)能燈需打

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義一種對正整數nF運算:①當n為奇數時,結果為3n+5;②當n為偶數時,結果為(其中k是使為奇數的正整數),并且運算重復進行,例如,取n26,第三次F運算的結果是11.若n111,則第2019F運算的結果是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數軸向左運動,同時,點B也從原點出發(fā)沿數軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

1)求出點A、點B運動的速度,并在數軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;

2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

3)若AB兩點從(1)中的位置開始,仍以原來的速度同時沿數軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在四邊形ABCD中,對角線AC、BD相交于點O,從①AB=CD;②AB∥CD;③OA=OC;④OB=OD;⑤AC⊥BD;⑥AC平分∠BAD;這六個條件中,則下列各組組合中,不能推出四邊形ABCD為菱形的是( )

A. ①②⑤B. ①②⑥C. ③④⑥D. ①②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點MN;②分別以MN為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一副三角尺(分別含45°,45°90°30°,60°,90°)按如圖所示擺放在量角器上,邊PD與量角器刻度線重合,邊AP與量角器180°刻度線重合,將三角尺ABP繞量角器中心點P以每秒10°的速度順時針旋轉,當邊PB刻度線重合時停止運動,設三角尺ABP的運動時間為t.

(1)當t=5時,邊PB經過的量角器刻度線對應的度數是 度:

2)若在三角尺ABP開始旋轉的同時,三角尺PCD也繞點P以每秒的速度逆時針旋轉,當三角尺ABP停止旋轉時,三角尺PCD也停止旋轉.

①當t為何值時,邊PB平分∠CPD;

②在旋轉過程中,是否存在某一時刻使∠BPD=2APC,若存在,請直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A(a ,2)是直線y=x上一點,以A為圓心,2為半徑作⊙A,若P(x,y)是第一象限內⊙A上任意一點,則的最小值為(

A. 1 B. C. —1 D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OA平分EOC

(1)若EOC=70°,求BOD的度數;

(2)若EOCEOD=2:3,求BOD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2017山東省泰安市)如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點PAC延長線上一點,且PDAD

(1)證明:∠BDC=PDC;

(2)若ACBD相交于點E,AB=1,CE:CP=2:3,求AE的長.

查看答案和解析>>

同步練習冊答案