13.如圖,在△ABC中,∠ABC、∠ACB的平分線相交于點(diǎn)I,根據(jù)下列條件,求∠BIC的度數(shù).
(1)若∠ABC=60°,∠ACB=70°,則∠BIC=115°;
(2)若∠ABC+∠ACB=110°,則∠BIC=125°;
(3)若∠A=40°,則∠BIC=110°;
(4)若∠A=α,則∠BIC=90°+$\frac{1}{2}α$.
請(qǐng)你把從以上計(jì)算中發(fā)現(xiàn)的結(jié)論用文字表述出來.

分析 (1)已知∠ABC=60°,∠ACB=70°,則角平分線所成的角度數(shù)為其度數(shù)的一半.然后根據(jù)三角形的內(nèi)角和為180度求出∠CIB的度數(shù).
(2)已知∠ABC+∠ACB=110°,∠ICB=$\frac{1}{2}$∠ACB,∠IBC=$\frac{1}{2}$∠ABC,∠ICB+∠IBC=$\frac{1}{2}$(∠ABC+∠ACB),然后根據(jù)三角形內(nèi)角和為180度,求出∠CIB的度數(shù).
(3)由于∠A=40°,則根據(jù)三角形內(nèi)角和為180°得∠ABC+∠ACB的度數(shù),然后根據(jù)分析(2)的方法求出∠CIB的度數(shù).
(4)由于∠A=α,則根據(jù)三角形內(nèi)角和為180°得∠ABC+∠ACB的度數(shù),然后根據(jù)分析(2)的方法求出∠CIB的度數(shù).

解答 解:(1)∠ICB=$\frac{1}{2}$∠ABC=30°,∠ICB=$\frac{1}{2}$∠ACB=35°,∠CIB=180°-30°-35°=115°;
(2)∠ICB+∠IBC=$\frac{1}{2}$(∠ABC+∠ACB)=55°,∠CIB=180°-55°=125°;
(3)∠ABC+∠ACB=180°-∠A=140°,∠ICB+∠IBC=$\frac{1}{2}$(∠ABC+∠ACB)=70°,∠CIB=180°-70°=110°;
(4)∠ABC+∠ACB=180°-∠A=180°-α,∠ICB+∠IBC=$\frac{1}{2}$(∠ABC+∠ACB)=90°-$\frac{1}{2}α$,∠CIB=180°-90°+$\frac{1}{2}α$=90°+$\frac{1}{2}α$;
故答案為:115°;125°;110°;90°+$\frac{1}{2}α$.

點(diǎn)評(píng) 本題考查三角形內(nèi)角和問題,解題關(guān)鍵是得到∠ICB與∠IBC的和,在求解過程中主要用到定理:三角形的內(nèi)角和為180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)軸上表示數(shù)-5和表示-17的兩點(diǎn)之間的距離是12個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知:如圖,AB平分∠CAD,∠C=∠D.求證:CB=DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,M為反比例函數(shù)y=$\frac{k}{x}$圖象上一點(diǎn),MA⊥y軸于點(diǎn)A,S△MAO=2時(shí),k=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(4,6).雙曲線y=$\frac{k}{x}$(x>0)的圖象經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△BCF∽△EBD,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.解下列方程:
(1)12-4(x-3)=7(x+5);
(2)$\frac{x-1}{2}$+$\frac{2x+1}{5}$=$\frac{3x+1}{4}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.滕州市某校八年級(jí)學(xué)生開展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100)為優(yōu)秀,下表是成績最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)):
1號(hào)2號(hào)3號(hào)4號(hào)5號(hào)總數(shù)
甲班891009611897500
乙班1009511091104500
經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班總數(shù)相等,此時(shí)有學(xué)生建議,可以通過考察數(shù)據(jù)中的其他信息作為參考,請(qǐng)你回答下列問題:
(1)分別求出兩班5名學(xué)生比賽成績的中位數(shù);
(2)計(jì)算并比較兩班比賽數(shù)據(jù)的方差哪個(gè)?
(3)根據(jù)以上信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?簡述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.解方程:
(1)x2+4x=1;
(2)x(x-3)=5x-15.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知O為直線AB上一點(diǎn),OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案