分析 (1)連接OF,AF,由題意得出$\widehat{EF}=\widehat{FD}$,由圓周角定理和等腰三角形的性質(zhì)得出∠1=∠3,證出AC∥OF,得出∴∠BFO=∠ACB=90°,即可得出結(jié)論;
(2)連接ED,交OF于H,由圓周角定理得出∠AED=90°,由勾股定理求出ED=8,證明四邊形ECFH為矩形,得出∠EHO=90°,OF⊥ED,由三角形中位線定理得出$OH=\frac{1}{2}AE=3$,求出HF=5-3=2,得出${S_{△ECF}}=\frac{2×4}{2}=4$,證出陰影部分的面積與△CEF的面積相等,即可得出答案.
解答 (1)證明:連接OF,AF如圖,
∵F為$\widehat{ED}$的中點(diǎn),
∴$\widehat{EF}=\widehat{FD}$,
∴∠1=∠2,∵AO=FO,
∴∠3=∠2,
∴∠1=∠3,
∴AC∥OF∴∠BFO=∠ACB=90°,
∵F為⊙O上一點(diǎn),
∴BC為⊙O的切線;
(2)連接ED,交OF于H,如圖,
∵AD為⊙O的直徑,
∴∠AED=90°,
在Rt△ADE中,$ED=\sqrt{A{D^2}-A{E^2}}$=8,
∵∠AED=90°=∠ACF=∠BFO,
∴四邊形ECFH為矩形,
∴∠EHO=90°,OF⊥ED,
∴H為ED的中點(diǎn),
∴EH=4,
∵O為AD的中點(diǎn),
∴$OH=\frac{1}{2}AE=3$,
∴HF=5-3=2,
${S_{△ECF}}=\frac{2×4}{2}=4$,
∵$\widehat{EF}=\widehat{FD}$,
∴弓形FD與弓形EF全等∴陰影部分的面積與△CEF的面積相等,
故圖中陰影部分的面積為4.
點(diǎn)評(píng) 本題考查了切線的判定、圓周角定理、平行線的判定與性質(zhì)、勾股定理、矩形的判定與性質(zhì)、三角形中位線定理等知識(shí);本題綜合性強(qiáng),有一定難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 16 | C. | 2$\sqrt{5}$ | D. | 4$\sqrt{5}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com