【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不含B、C兩點),將 ABP沿直線AP翻折,點B落在點E處;在CD上有一點M,使得將 CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接MA,NA.則以下結論中正確的個數有( ).
① CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當P為BC中點時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當 ABP≌ AND時,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
【答案】D
【解析】解:∵∠APB=∠APE,∠MPC=∠MPN,
∵∠CPN+∠NPB=180°,
∴2∠NPM+2∠APE=180°,
∴∠MPN+∠APE=90°,
∴∠APM=90°,
∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,
∴∠CPM=∠PAB,
∵四邊形ABCD是正方形,
∴AB=CB=DC=AD=4,∠C=∠B=90°,
∴△CMP∽△BPA.故①正確,
設PB=x,則CP=4-x,
∵△CMP∽△BPA,
∴= ,
∴CM=x(4-x),
∴S四邊形AMCB=[4+x(4-x)]×4=-x2+2x+8=-(x-2)2+10,
∴x=2時,四邊形AMCB面積最大值為10,故②正確,
易證得△ADN≌△AEN,當PB=PC=PE=2時,設ND=NE=y,
在RT△PCN中,(y+2)2=(4-y)2+22解得y= ,
∴NE≠EP,故③錯誤,
作MG⊥AB于G,
∵AM== ,
∴AG最小時AM最小,
∵AG=AB-BG=AB-CM=4-x(4-x)=(x-2)2+3,
∴x=2時,AG最小值=3,
∴AM的最小值==5,故④錯誤.
∵△ABP≌△ADN時,
∴∠PAB=∠DAN=22.5°,在AB上取一點K使得AK=PK,設PB=z,
∴∠KPA=∠KAP=22.5°
∵∠PKB=∠KPA+∠KAP=45°,
∴∠BPK=∠BKP=45°,
∴PB=BK=z,AK=PK=z,
∴z+z=4,
∴z=4-4,
∴PB=4-4,故⑤正確.
故正確的為①②⑤.
故選D.
【考點精析】關于本題考查的相似三角形的判定與性質,需要了解相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網格,請在所給的網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使點A坐標為(﹣2,4),點B坐標為(﹣4,2);
(2)在第二象限內的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數,則寫出點C的坐標,寫出△ABC的周長(結果保留根號);
(3)畫出△ABC關于y軸的對稱圖形△A1B1C1;并寫出點A1、B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,已知線段AB=20cm,點C為AB上的一個動點,點D,E分別是AC和BC的中點
(1)若點C恰好是AB中點,則DE的長是多少?(直接寫出結果)
(2)若BC=14cm,求DE的長
(3)試說明不論BC取何值(不超過20cm),DE的長不變
(4)知識遷移:如圖②,已知∠AOB=130°,過角的內部任一點C畫射線OC,若OD,OE分別平分∠AOC和∠BOC,試求出∠DOE的大小,并說明∠DOE的大小與射線OC的位置是否有關?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm,動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動,E點運動到B點停止,F點繼續(xù)運動,運動到點D停止.如圖可得到矩形CFHE,設F點運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數關系用圖象表示大致是如圖中的( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABC是等邊三角形,D、E分別是BC、AC上一點,且AE=CD,AD,AD、BE交于P,過B作BQ⊥AD于Q,若QP=3cm,PE=1cm,求AD的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點是等邊內一點, .將繞點按順時針方向旋轉得,連接.
(1)求證: 是等邊三角形;
(2)當時,試判斷的形狀,并說明理由;
(3)探究:當為多少度時, 是等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的5×5的方格紙中,每個小正方形的邊長為1,點A、B、C均為格點(格點是指每個小正方形的頂點).
(1)按下列要求畫圖:
①標出格點D,使CD∥AB,并畫出線段CD;
②標出格點E,使CE⊥AB,并畫出線段CE.
(2)CD與CE的關系是 .
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF= ,求⊙O的半徑r.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com