13.如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4).
(1)畫(huà)出△ABC關(guān)于y軸的對(duì)稱(chēng)圖形△A1B1C1;
(2)畫(huà)出將△ABC繞原點(diǎn)O按順時(shí)鐘旋轉(zhuǎn)180°所得的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并直接寫(xiě)出點(diǎn)P的坐標(biāo).(不寫(xiě)解答過(guò)程,直接寫(xiě)出結(jié)果)

分析 (1)作出△ABC各點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn),再順次連接即可;
(2)作出△ABC各點(diǎn)繞原點(diǎn)O按順時(shí)鐘旋轉(zhuǎn)180°所得的對(duì)稱(chēng)點(diǎn),再順次連接即可;
(3)作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′,連接A′B,與x軸的交點(diǎn)即為所求.

解答 解:(1)圖中△A1B1C1即為所求;

(2)圖中△A2B2C2即為所求;

(3)圖中點(diǎn)P即為所求,點(diǎn)P坐標(biāo)為(2,0).

點(diǎn)評(píng) 本題考查的是作圖-軸對(duì)稱(chēng)變換和旋轉(zhuǎn)變換,根據(jù)題意作出各點(diǎn)在不同變換下的對(duì)應(yīng)點(diǎn)是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(guò)一次函數(shù)y=-$\frac{3}{2}$x+3與x軸的交點(diǎn),并且經(jīng)過(guò)點(diǎn)(1,1),求:
(1)這個(gè)二次函數(shù)的表達(dá)式;
(2)當(dāng)x取何值時(shí),y隨著x的增大而減。
(3)當(dāng)0≤x≤4時(shí),求y的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.8筐白菜,以每25千克為標(biāo)準(zhǔn),超過(guò)的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),稱(chēng)后的紀(jì)錄如下:

回答下列問(wèn)題:
(1)這8筐白菜中最接近標(biāo)準(zhǔn)重量的這筐白菜重24.5千克;
(2)與標(biāo)準(zhǔn)重量比較,8筐白菜總計(jì)超過(guò)或不足多少千克?
(3)若白菜每千克售價(jià)2元,則出售這8筐白菜可賣(mài)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.先化簡(jiǎn),再求值:(a+b)(2a-b)-2a(a-b+1),其中a=$\frac{1}{2}$,b=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖:拋物線y1=ax2+bx+c與直線y2=kx+b交于A(-3,0)、C(0,-3)兩點(diǎn),拋物線與x軸交于另一點(diǎn)B(1,0).利用圖象填空:
(1)方程ax2+bx+c=0的根為x=-3或1;
(2)方程ax2+bx+c=-3的根為x=-2或0;
(3)若y1<y2,則x的取值范圍為-3<x<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.解方程:
(1)20-2x=-x-1;                     
(2)$\frac{0.2-x}{0.3}$-1=$\frac{0.1+x}{0.2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t=0.5時(shí),求線段QM的長(zhǎng);
(2)當(dāng)M在AB上運(yùn)動(dòng)時(shí),是否可以使得以C、P、Q為頂點(diǎn)的三角形為直角三角形?若可以,請(qǐng)求t的值;若不可以,請(qǐng)說(shuō)明理由.
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?\frac{CQ}{RQ}$是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)(-36$\frac{9}{11}$)÷9                       
(2)(-$\frac{3}{5}$)×(-3$\frac{1}{2}$)÷(-1$\frac{1}{4}$)÷3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.計(jì)算:
①(-$\frac{a}$)2-(-$\frac{a}$)3÷(-a2b)2
②$\frac{a+2b}{a-b}$+$\frac{b-a}$-$\frac{2a}{a-b}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案