Processing math: 80%
5.如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t=0.5時(shí),求線段QM的長(zhǎng);
(2)當(dāng)M在AB上運(yùn)動(dòng)時(shí),是否可以使得以C、P、Q為頂點(diǎn)的三角形為直角三角形?若可以,請(qǐng)求t的值;若不可以,請(qǐng)說明理由.
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?\frac{CQ}{RQ}$是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

分析 (1)利用直線平行得出Rt△AQM∽R(shí)t△CAD,再利用對(duì)應(yīng)邊的比值相等求出即可;
(2)點(diǎn)M在線段AB上運(yùn)動(dòng)時(shí),以C、P、Q為頂點(diǎn)的三角形為直角三角形,可利用三邊關(guān)系得出;
(3)CQRQ為定值.當(dāng)t>2時(shí),如備用圖2,先證明四邊形AMQP為矩形,再利用平行線分線段成比例定理的推論可得△CRQ∽△CAB,再利用比例線段可求CQRQ

解答 解:(1)∵AB∥DC,
∴Rt△AQM∽R(shí)t△CAD.
QMAM=ADCD
QM0.5=42,
∴QM=1.

(2)∵根據(jù)題意可得當(dāng)0≤t≤2時(shí),以C、P、Q為頂點(diǎn)可以構(gòu)成三角形為直角三角形,故有兩種情況:
①當(dāng)∠CPQ=90°時(shí),點(diǎn)P與點(diǎn)E重合,
此時(shí)DE+CP=CD,即t+t=2,∴t=1,
②當(dāng)∠PQC=90°時(shí),如備用圖1,
此時(shí)Rt△PEQ∽R(shí)t△QMA,∴EQPE=MAQM,
由(1)知,EQ=EM-QM=4-2t,
而PE=PC-CE=PC-(DC-DE)=t-(2-t)=2t-2,
42t2t2=12
∴t=53;
③當(dāng)2<t≤6時(shí),
可得CD=DP=2時(shí),∠DCP=45°,
可以使得以C、P、Q為頂點(diǎn)的三角形為直角三角形,
此時(shí)t=4,
綜上所述,t=1或 53或4;
(3)CQRQ為定值.
當(dāng)t>2時(shí),如備用圖2,PA=DA-DP=4-(t-2)=6-t,
由(1)得,BF=AB-AF=4,
∴CF=BF,
∴∠CBF=45°,
∴QM=MB=6-t,
∴QM=PA,
∵AB∥DC,∠DAB=90°,
∴四邊形AMQP為矩形,
∴PQ∥AB,
∴△CRQ∽△CAB,
CQRQ=BCAB=CF2+BF2AB=426=223

點(diǎn)評(píng) 此題主要考查了相似三角形的性質(zhì)與判定以及直角三角形的判定等知識(shí),題目綜合性較強(qiáng),分類討論時(shí)要考慮全面,根據(jù)t的取值范圍進(jìn)行討論是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

15.-15的倒數(shù)是-5;|-2|=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,分別以△ABC的邊AB、AC向外作等邊△ABE和等邊△ACD,直線BD與直線CE相交于點(diǎn)O.
(1)求證:CE=BD.
(2)如果當(dāng)點(diǎn)A在直線BC的上方變化位置,且保持∠ABC和∠ACB都是銳角,那么∠BOC的度數(shù)是否會(huì)發(fā)生變化?若變化,請(qǐng)說明理由;若不變化,請(qǐng)求出∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4).
(1)畫出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O按順時(shí)鐘旋轉(zhuǎn)180°所得的△A2B2C2;
(3)在x軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,并直接寫出點(diǎn)P的坐標(biāo).(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.小王在解關(guān)于x的方程2a-2x=15時(shí),誤將-2x看作+2x,得方程的解x=3,求原方程的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖,矩形OABC在平面直角坐標(biāo)系xoy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O、A兩點(diǎn),直線AC交拋物線于點(diǎn)D(1,n).
(1)求拋物線的函數(shù)表達(dá)式.
(2)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以點(diǎn)A、D、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,AB是半圓的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.判斷直線PD是否為⊙O的切線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D、C.若∠CAB=30°,CD=2,則陰影部分面積是( �。�
A.32B.\frac{π}{6}C.\frac{\sqrt{3}}{2}-\frac{π}{6}D.\frac{\sqrt{3}}{3}-\frac{π}{6}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.為了了解我校八年級(jí)600名學(xué)生的體重情況,從中抽查了100名學(xué)生的體重進(jìn)行統(tǒng)計(jì)分析,在這個(gè)問題中,下列說法錯(cuò)誤的是( �。�
A.600名學(xué)生的體重是總體B.被抽取的100名學(xué)生的體重是樣本
C.樣本的容量是100D.被抽取的100名學(xué)生是樣本

查看答案和解析>>

同步練習(xí)冊(cè)答案