【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經(jīng)過點A、B、D,且∠A=60°,求此時菱形的邊長;
(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)
【答案】
(1)解:如圖,連接OA,作OE⊥AB,
∵四邊形ABCD為菱形,
∴AB=AD,
∵∠A=60°,
∴△ABD為等邊三角形,
∵半徑為1的⊙O經(jīng)過點A、B、D,OE⊥AB,
∴∠OAE=30°,AB=2AE,
∴cos∠OAE=cos30=,
∴AE=,
∴AB=2AE=,
∴菱形的邊長為.
(2)解:如圖:連接PD,以點P為圓心PD為半徑畫弧交BC于點D′,連接DD′,過點P作D′D的垂線a,直線a即為所求直線.
【解析】(1)連接OA,作OE⊥AB,由菱形的性質(zhì)得AB=AD,由等邊三角形的判定——有一個角是60°的等腰三角形是等邊三角形,即△ABD為等邊三角形,再根據(jù)垂徑定理得∠OAE=30°,AB=2AE,由銳角三角函數(shù)得cos∠OAE=cos30°=,即AE=,得AB=2AE=
(2)由菱形和垂直平分線的性質(zhì)根據(jù)題意即可畫出圖形.
【考點精析】根據(jù)題目的已知條件,利用等邊三角形的判定和菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握三個角都相等的三角形是等邊三角形;有一個角等于60°的等腰三角形是等邊三角形;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ACB中,∠C=90°,AC=5cm,BC=2cm,點P從B點出發(fā)以1cm/s的速度沿CB延長線運動,運動時間為t秒.以AP為斜邊在其上方構(gòu)造等腰直角△APD.當(dāng)t=1秒時,則CD=_____cm,當(dāng)D運動的路程為4cm時,則P運動時間t=_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OD平分∠BOE,OF平分∠AOD.
(1)若∠AOC=32°,求∠EOF的度數(shù);
(2)若∠EOF=60°,求∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車油箱中的余油量(升是它行駛的時間(小 時) 的一次函數(shù) . 某天該汽車外出時, 油箱中余油量與行駛時間的變化關(guān)系如圖:
(1) 根據(jù)圖象, 求油箱中的余油與行駛時間的函數(shù)關(guān)系 .
(2) 從開始算起, 如果汽車每小時行駛 40 千米, 當(dāng)油箱中余油 20 升時, 該汽車行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國是一個嚴(yán)重缺水的國家 . 為了加強公民的節(jié)水意識, 某市制定了如下用水收費標(biāo)準(zhǔn): 每戶每月的用水不超過 6 噸時, 水價為每噸 2 元, 超過 6 噸時, 超過的部分按每噸 3 元收費 . 該市某戶居民 5 月份用水噸, 應(yīng)交水費元 .
(1) 若,請寫出與的函數(shù)關(guān)系式 .
(2) 若,請寫出與的函數(shù)關(guān)系式 .
(3) 在同一坐標(biāo)系下, 畫出以上兩個函數(shù)的圖象 .
(4) 如果該戶居民這個月交水費 27 元, 那么這個月該戶用了多少噸水?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
(探究展示)
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
(拓展延伸)
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法: ① ;②數(shù)軸上的點與實數(shù)成一一對應(yīng)關(guān)系;③兩條直線被第三條直線所截,同位角相等;④垂直于同一條直線的兩條直線互相平行;⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有 ___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD位于平面直角坐標(biāo)系中,A、B在y軸上,且其坐標(biāo)分別為A(0,a)和B(0,-b),D點坐標(biāo)為(-c,a),CD與x軸交于E. 其中a、b、c均為正數(shù),且滿足.
(1)請判斷△ABD的形狀并說明理由.
(2)如圖,將圖形沿AM折疊,使D落在x軸上F點,若現(xiàn)有一長度為a的線段,可與線段EF、OF構(gòu)成直角三角形,求a的值.
(3)若P為x軸正半軸上一點,且滿足∠APB=45°,請求出P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE,BF,BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com