【題目】中,,,將繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到旋轉(zhuǎn)角為,點(diǎn)B,點(diǎn)C的對應(yīng)點(diǎn)分別為點(diǎn)D,點(diǎn)E,過點(diǎn)D作直線AB的垂線,垂足為F,過點(diǎn)E作直線AC的垂線,垂足為P,當(dāng)時(shí),點(diǎn)P與點(diǎn)C之間的距離是________.

【答案】317.

【解析】

由旋轉(zhuǎn)的性質(zhì)可知△ACB≌△AED,推出∠CAB=EAD=CBA,則當(dāng)∠DAF=CBA時(shí),分兩種情況,一種是A,FE三點(diǎn)在同一直線上,另一種是 DA,C在同一條直線上,可分別求出CP的長度.

解:∵AC=BC=10,
∴∠CAB=CBA,
由旋轉(zhuǎn)的性質(zhì)知,△ACB≌△AED
AE=AC=10,∠CAB=EAD=CBA
①∵∠DAF=CBA,
∴∠DAF=EAD,
A,FE三點(diǎn)在同一直線上,如圖1所示,


過點(diǎn)CCHABH,
AH=BH=AB=7,
EPAC,
∴∠EPA=CHA=90°,
又∵∠CAH=EAPCA=EA,
∴△CAH≌△EAPAAS),
AP=AH=7,
PC=AC-AP=10-7=3;
②當(dāng)DA,C在同一條直線上時(shí),如圖2


DAF=CAB=CBA,
此時(shí)AP=AD=AB=7
PC=AC+AP=10+7=17.
故答案為:317

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像交x軸、y軸于A、B兩點(diǎn)

(1)直接寫出A、B兩點(diǎn)的坐標(biāo):____________;______________。

(2)P為線段AB上一點(diǎn),PQ//y軸交x軸于C,交雙曲線于Q且四邊形OBPQ為平行四邊形,△OCQ的面積為3

① 求k的值和P點(diǎn)坐標(biāo);

② 將△OBP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一周,在整個(gè)旋轉(zhuǎn)過程中,P點(diǎn)能否落在雙曲線上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A、B兩點(diǎn),交y軸于C點(diǎn),其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論①abc<0;(4a﹣b)(2a+b)<0;4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為( 。

A. ①②③④ B. ①②④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線的函數(shù)解析式為,且軸交于點(diǎn),直線經(jīng)過點(diǎn)、,直線、交于點(diǎn)

1)求直線的函數(shù)解析式;

2)求的面積;

3)在直線上是否存在點(diǎn),使得面積是面積的倍?如果存在,請求出坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上.點(diǎn)B的坐標(biāo)為(8,4),將該長方形沿OB翻折,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)D,ODBC交于點(diǎn)E.

(I)證明:EO=EB;

(Ⅱ)點(diǎn)P是直線OB上的任意一點(diǎn),且OPC是等腰三角形,求滿足條件的點(diǎn)P的坐標(biāo);

(Ⅲ)點(diǎn)MOB上任意一點(diǎn),點(diǎn)NOA上任意一點(diǎn),若存在這樣的點(diǎn)M、N,使得AM+MN最小,請直接寫出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,

1)畫出關(guān)于原點(diǎn)中心對稱的,其中A,BC的對應(yīng)點(diǎn)分別為,;

2)在(1)的基礎(chǔ)上,將向上平移4個(gè)單位長度,畫出平移后的,并寫出的對應(yīng)點(diǎn)的坐標(biāo);

3Dy軸上一點(diǎn),且是以AB為直角邊的直角三角形.請直接寫出D點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x-2與y軸交于點(diǎn)C,與x軸交于點(diǎn)B,與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A,連接OA,若S△AOB∶S△BOC=1∶2,則k的值為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把順序連結(jié)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

1)任意四邊形的中點(diǎn)四邊形是什么形狀?為什么?

2)符合什么條件的四邊形,它的中點(diǎn)四邊形是菱形?

3)符合什么條件的四邊形,它的中點(diǎn)四邊形是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計(jì)劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)為正、減產(chǎn)為負(fù)):

1)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) ?

2)該廠實(shí)行每周計(jì)件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎(jiǎng)20元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少元?

查看答案和解析>>

同步練習(xí)冊答案