分析 (1)先作DM∥AB,交CF于M,可得△CDM為等邊三角形,再判定△DMF≌△EBF,最后根據(jù)全等三角形的性質(zhì)以及等邊三角形的性質(zhì),得出結(jié)論;
(2)根據(jù)CD⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=$\frac{1}{3}$BC,最后根據(jù)AB=12即可求得BF的長(zhǎng).
解答 解:(1)如圖,作DM∥AB,交CF于M,則∠DMF=∠E,
∵△ABC是等邊三角形,
∴∠C=60°=∠CDM=∠CMD,
∴△CDM是等邊三角形,
∴CD=DM,
在△DMF和△EBF中,
$\left\{\begin{array}{l}{∠DMF=∠E}\\{DF=EF}\\{∠DFM=∠EFB}\end{array}\right.$,
∴△DMF≌△EBF(ASA),
∴DM=BE,
∴CD=BE;
(2)∵CD⊥AC,∠A=60°=∠ABC,
∴∠E=∠BFE=∠DFM=∠FDM=30°,
∴BE=BF,DM=FM,
又∵△DMF≌△EBF,
∴MF=BF,
∴CM=MF=BF,
又∵AB=BC=12,
∴CM=MF=BF=4.
點(diǎn)評(píng) 本題主要考查了等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作平行線,構(gòu)造等邊三角形和全等三角形,根據(jù)全等三角形的性質(zhì)以及等邊三角形的性質(zhì)進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
第1排的 座位數(shù) | 第2排的 座位數(shù) | 第3排的 座位數(shù) | 第4排的 座位數(shù) | … | 第n排的 座位數(shù) |
12 | 12+a | 12+2a | 12+3a | … | 12+(n-1)a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y2-49x2 | B. | $\frac{1}{49}$-x4 | C. | -m4-n2 | D. | $\frac{1}{4}$(p+q)2-9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com