【題目】如圖,三角形ABC三邊的長分別為ABm2n2,AC2mn,BCm2+n2,其中mn都是正整數(shù).以AB、AC、BC為邊分別向外畫正方形,面積分別為S1、S2S3,那么S1、S2、S3之間的數(shù)量關(guān)系為_____

【答案】S1+S2S3

【解析】

首先利用勾股定理的逆定理判定△ABC是直角三角形,設(shè)RtABC的三邊分別為ab、c,再分別用ab、c表示S1、S2S3的值,由勾股定理即可得出S1、S2、S3之間的數(shù)量關(guān)系.

解:∵AB=m2-n2AC=2mn,BC=m2+n2,
AB2+AC2=BC2,
∴△ABC是直角三角形,
設(shè)RtABC的三邊分別為a、bc,
S1=c2,S2=b2,S3=a2,
∵△ABC是直角三角形,
b2+c2=a2,即S1+S2=S3
故答案為:S1+S2=S3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】由大小相同(棱長為1分米)的小立方塊搭成的幾何體如下圖.

(1)請在右圖的方格中畫出該幾何體的俯視圖和左視圖;

(2)圖中有 塊小正方體,它的表面積(含下底面)為

(3)用小立方體搭一幾何體,使得它的俯視圖和左視圖與你在上圖方格中所畫的圖一致,則這樣的幾何體最少要_______個小立方塊,最多要_______個小立方塊.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,ACB=90°,tanBAC=. D在邊AC上(不與A,C重合),連結(jié)BD,FBD中點.

1)若過點DDEABE,連結(jié)CF、EFCE,如圖1.設(shè),則k=

2)若將圖1中的ADE繞點A旋轉(zhuǎn),使得D、EB三點共線,點F仍為BD中點,如圖2所示.求證:BE-DE=2CF;

3)若BC=6,點D在邊AC的三等分點處,將線段AD繞點A旋轉(zhuǎn),點F始終為BD中點,求線段CF長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙蓉服裝店老板到廠家購AB兩種型號的服裝,若購A種型號服裝6件,B種型號服裝16件,需要1260元;若購進A種型號服裝12件,B種型號服裝8件,需要1080元。

1)求A、B兩種型號的服裝每件分別為多少元?

2)若銷售一件A型服裝可獲利20元,銷售一件B型服裝可獲利30元,根據(jù)市場需要,服裝店老板決定:購進A型服裝的數(shù)量要比購進B型服裝的數(shù)量的2倍還多4件,且A型服裝最多可購進28件,這樣服裝全部售出后可使總的獲利不少于780元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了增強學生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調(diào)查的學生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用三種大小不同的5個正方形和一個長方形(陰影部分)拼成長方形ABCD,其中EF=2厘米,最小的正方形的邊長為x厘米.

1)用含x的代數(shù)式表示FG=________厘米,DG=________厘米.

2)若長方形ABCD的周長等于52,求x的值

3)若FGDG=23,求四邊形FGDH(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù) y=kx+b 的圖像如圖所示,則當kx+b>0 時,x 的取值范圍為___________.

【答案】x>1

【解析】分析:題目要求 kx+b>0,即一次函數(shù)的圖像在x 軸上方時,觀察圖象即可得x的取值范圍.

詳解:

∵kx+b>0,

一次函數(shù)的圖像在x 軸上方時,

∴x的取值范圍為:x>1.

故答案為:x>1.

點睛:本題考查了一次函數(shù)與一元一次不等式的關(guān)系,主要考查學生的觀察視圖能力.

型】填空
結(jié)束】
16

【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面上有四個點A、B、CD,請用直尺按下列要求作圖:

1)作直線AB

2)作射線BC;

3)連接AD,并將其反向延長至E,使DE2AD;

4)找到一點F,使點FA、BC、D四點的距離之和最短.

查看答案和解析>>

同步練習冊答案