【題目】如圖為二次函數(shù)圖象,直線與拋物線交于兩點,兩點橫坐標分別為根據(jù)函數(shù)圖象信息有下列結論:

;

②若對于的任意值都有,;

;

;

⑤當為定值時若變大,則線段變長

其中,正確的結論有__________(寫出所有正確結論的番號)

【答案】①②③

【解析】

分別參考圖像去解答,因為對稱軸為正數(shù),所以 異號,根據(jù)與y軸交點為c得出,去判斷各種情況,而且越大開口越小,進而得出正確答案即可.

解:①中,對稱軸為正數(shù),所以 異號,

y軸交點為,

,故①對;

②中,由圖像得:,知道,

當函數(shù)與x軸左交點為時,代入函數(shù)表達式得:

,

,此時考慮的是臨界情況,

對于的任意值都有,,故②對;

③中,所對的值是關于對稱軸對稱的,

對稱軸,

,故③對;

④中無法確定;

⑤中,當為定值時若變大,則拋物線的開口變小,則線段變短,故⑤錯;

故答案填:①②③.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知動點A在函數(shù)的圖象上,ABx軸于點B,ACy軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當NF4EM時,圖中陰影部分的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,點軸正半軸上,以為一邊作等腰直角,使得點在第一象限.

1)求出所有符合題意的點的坐標;

2)在內部存在一點,使得之和最小,請求出這個和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(方法回顧)

課本研究三角形中位線性質的方法

已知:如圖①, 已知中,分別是,兩邊中點.

求證:,

證明:延長至點,使, 連按.可證:( 。

由此得到四邊形為平行四邊形, 進而得到求證結論

1)請根據(jù)以上證明過程,解答下列兩個問題:

①在圖①中作出證明中所描述的輔助線(請用鉛筆作輔助線);

②在證明的括號中填寫理由(請在,,,中選擇) .

(問題拓展)

2)如圖②,在等邊中, 是射線上一動點(點在點的右側),把線段繞點逆時針旋轉得到線段,點是線段的中點,連接、

①請你判斷線段的數(shù)量關系,并給出證明;

②若,求線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車沿同一條道路從地出發(fā)向1200外的地輸送緊急物資,甲在途中休息了3小時,休息前后的速度不同,最后兩車同時到達地,如圖甲、乙兩車到地的距離(千米)與乙車行駛時間(小時)之間的函數(shù)圖象.

1)甲車休息前的行駛速度為 千米/時,乙車的速度為 千米/時;

2)當9≤≤15,求甲車的行駛路程之間的函數(shù)關系式;

3)直接寫出甲出發(fā)多長時間與乙在途中相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(A在點B左側),與y軸交于點C.

(1)求線段BC的長;

(2)0≤y≤3時,請直接寫出x的范圍;

(3)P是拋物線上位于第一象限的一個動點,連接CP,當∠BCP90o時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線為常數(shù),)與軸交于兩點,與軸交于點.設該拋物線的頂點為,其對稱軸與軸的交點為

1)求該拋物線的解析式;

2為線段(含端點)上一點,軸上一點,且

①求的取值范圍;

②當取最大值時,將線段向上平移個單位長度,使得線段與拋物線有兩個交點,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,(如圖).以線段為邊向外作等邊三角形,點是線段的中點,連接并延長交線段于點

1)求證:四邊形為平行四邊形;

2)連接,交于點

①若,求的長;

②作,垂足為,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小超騎電動車、小生騎自行車分別同時從甲、乙兩地出發(fā),勻速相向而行,在分鐘時兩人相遇,在行駛的過程中,小超到達乙地后停留一會,再按原路原速返回甲地,小生一直勻速騎自行車后,與小超同時到達甲地,如圖表示兩人距乙地的距離與時間之間的函數(shù)關系.

1)小超騎車的速度_ ,小生騎車的速度 ;

2)求線段的解析式;

3)如果小超不在乙地停留,按原路原速直接返回,問在小超回到甲地之前,小超何時能追上小生?

查看答案和解析>>

同步練習冊答案